
*D-AL73 886 M WED1gWOFITHE INTIDUTIOIA? N /

UNCLASSIFIED U G R a

11111 '4) ~ 12.2

I1 11.25 1111.4A 1.6 L
Wi gaw -

MICRocnpY RESOLUTION TEST CHART

AD-A173 886

IL

.,' '

C-2,

PPOCEEDI !CS OF THE

INTERNATIONAL MEETINn
ON ADVANCES IN LEAPNING

IMAL - 8 6
Les Arc, Jul-y 28th - Auqus 1st 1986

,nit4 Associge au CNRS UA 410, AL KHOCWARIZMI

Rapport de Recherche N OZ9 o

0

PROC EDINGS OF IMAL - 86

B4TERNATONAL MEETING ON ADYANCES IN LEARNING

les Ares (France) July 8th - August Lst

ACNOLD GEN

This meeting is organized by "Association Frnraise potar I Aprentissage Sym-
boliq. e Atatomatique". Its initiators and organizers are Y Kodratoff and R.
RMihaLski.

It has been sponsored by USARG, DIGITAL, and CGE.

Without funding of USARG and DIGITAL, its orsanization would have been in-
possible.
Let us thank their real interest in Artificial Intelligence and Machine learning.

FICAM NE EET

The programme committee is made of

the invited speakers:
Yves Kodratoff, Pat Langley, Michael Lebowitz. Ryszard Michalski, Bruce Pot ',
Tom Mitchell, Roger Shank.

the Commentators:
1. Bratko, P. Brazdil, R. Holte, R. Stepp.

4~ 3 ~2

--AA

p,,

4-1

SUMMARY

D. J. Gikanmr: CONCEPT LEARNING: ALTRNAIVE METHODS OF FOCUSSNG pp3
-38.

p

A K Prieditis: DISCOVERY OF A.GORITHMS TMOM WEAK METODS, pp 37- 2.

S. J. Hanson & 1L Bauer .CONCEPTUAL CLUST: RING, SEMANTIC ORGANIATON
AND POLYMORPHYP 53-77.

C. Vrain rHE USE OF DOMAIN PROPERTIES EXP~RESSED AS THEOREMS IN
MACHINE LFARN 3 yP 7S8- 92.

N. amgo QRN M OBJECT GENERALIZATION: A TOOL FOR IROVING
KNOWLEDGE BASED SYSTEMS pp 93 - 104.

S J. Halkaowki Zatal4MACHM LEARNING AND META-LEVEL INFERDNCE pp 105 -
118. 7;

H. J. Pa t.,_.EARNING FAULT DIAGNOSIS HaTRISTICS FROM DEVICE DESCRIP-
TIONS) pp 117- 131.

A. P. 'iw Ak A~ Fe-SOMNE PREDICTIVE D=TCULTIES IN AUTTOMATIC L\DUC-
N~ 132 - 139.

S. L. rlanL'RITLENESS AND MACINE LEARNING~ Ipp 140 - 158.

B. f TROTU: AN EXPERIMENT IN EXEMPLAR-BASED LEARNING FOR EX-

Y. KdraLo&_lARNTING EXPERT KNOWEDGE BY IMPROVING THE EXPLAA.IONS
PROVIDED BY THE SYSrLpp 175 - 198.

The papers of Mitceldl, Lebowitz, Michalski. Langley & Nordhausen, Shank were
received too late for inclusion in this volume. They will be distributed to parucl-
pan=s at the einn of the meting.

CERCLE TECHNICAL REPORT NO. 6

CONCEPT LEARNINGs

ALTERNATIVE M'ETHODS OF FOCUSSING

By

OAVIO J. GILMORE

Centre for Research on Computers and Learning

University of Lancaster

Lancaster

LA1 4YR

P24

CONCEPT LEARNING: ALTERNATIVE METHODS OF FOCUSSING

by

David J. Gilmore,

Centre for Research on Computers and Learning,
University of Lancaster,

Lancaster, LA1 4YR.
England.

ABSTRACT

This paper discusses the standard focussing algorithm
and discusses its strengths and weaknesses. Two alternative
versions of the algorithm (POSNEG and MULTI) are presented,
which do not suffer from some of the weaknesses of the
standard algorithm, and which can learn some disjunctiv'
concepts. A closer analysis of the standard algorithm and
POSNEG reveals that they are closely related to a common
underlying algorithm, but that they make different assump-
tions about how to take advantage of the structure of the
description space. These assumptions are termed the Con-
tainment Assumption and the Structured Negative Assumption.

it is suggested that the Structured Negative Assump-

tion is preferable because it produces a more robust algo-
rithm (POSNEG), which can be easily generalised to the
learning of multiple concepts (MULTI). However, the main
conclusion of the analysis is that the description space is
the crucial factor in the success of concept learning, and
that research should be aimed at ways of creating and

adjusting the structure of the description space while
learning. Such research could be of general use to machine
learning, outside the particular domain of concept learn-
ing.

D. Gilmore Concept Learning

1. INTRODUCTION

Focussing is an important technique for learning rules and

concepts (Bundy, Plummer and Silver, 1985), and although it is not

a complex technique it has received very litle attention in the

literature (an exception is Wielemaker and Bundy, 1985). Our

interest was stimulated by the fact that a very similar algorithm

can be derived from work by Bruner, Goodnow and Austin (1956) as a

psychological process of concept learning. Our current research (on

intelligent tutoring systems) requires a machine learning technique

which has psychological plausibility and therefore focussing was

chosen as the relevant technique. The research reported in this

paper was intended to develop the focussing algorithm of Bundy et

al, into something more closely related to human learning. In fact,

the result was a fuller understanding of the algorithm itself,

along with some possibilities for psychological improvements. This

paper concentrates on the discus;ion of the focussing algorithm

itself.

To begin with, the standard focussing algorithm is described,

along with a simple, but typical, example. This leads on to a con-

sideration of the algorithm's main strengths and weaknesses, which

give rise to an alt rnative algorithm (called POSNEG), which seems

to be more powerful than the standard. The next section of the

paper tries to understand thp naturp of this extra power, and it

presents an alternative perspective on the nature of the descrip-

tion space and the algorithm. This reveals some assumptions under-

lying both versions of the algorithm, siggesting that both are

specific versions of a common focussing algorithm. From these

assumptions a third algorithm (MULTI) is suggested, which can

0. Gilmore Concept Learning

handle multiple concepts at once, and which can handle some dis-

junctive concepts. However, at the end of these discussions it

becomes clear that the important part of the success of focussing

lies not in the algorithm, but in the description space.

For the sake of clarity one piece of terminology must be

defined:- includes is used to refer to concepts including an exam-

ple (ie. positive examples are included in the concept, and nega-

tive examples are excluded). In contrast, contains refers to a con-

cept including all examples defined by some other concept (ie. the

concept coloured objects contains the concept red objects).

2. FOCUSSING

Focussing is a concept learning algorithm, which requires

positive and negative examples of the concept to be learnt. These

examples are expressed as a collection of values of prespecified

attributes. The algorithm is based on a description space, which

represents all the possible concepts which may occur: each concept

being described as a set of values, one for each attribute. The

description space is a set of trees: each tree describing the

structure of the values of a particular attribute. The algorithm

works by maintaining "markers" on these trees, so as to represent a

maximalilv eneral concept (1), and a maximally soerific concept

(S). The maximally general concept is initially marked by the root

nodes of each tree, representing any value on each attribute. This

is because some examples are necessary before any concept can be

ruled out. Likewise the maximally specific concept is initially

marked as having no value on any tree, since nothing more specific

0. Gilmore Concept Learning

P7

can be claimed about the concept. Positive examples cause S to be

altered, through generalisation, while negative examples affect G

through a process of discrimination. The. generalisation process

moves the "markers" for S up the tree towards G, such that the con-

cept described by the new "markers" will include the new positive

example. This can always be achieved in only one way, and therefore

S is always a single concept. However, the discrimination process

moves the G markers" down the tree such that the negative example

is excluded from the concept described by G. This cannot always be

done uniquely which means that G has to be described as a set of

concepts (with possibly only one member). To avoid confusion S will

also be described as a set (of one concept only). When the markers

for S and G coincide it is assumed that learning is complete and

the concept they describe is the target concept.

Using HnIte's (1986) approach to describing such systems, Fig-

ure 1 represents focussing as a Learning System, a Performance Sys-

tem and a Performance System Declarative Aspect. The Learning Sys-

tem extracts information from the presented examples, whereas the

Performance System classifies unlabelled examplas. The Performance

System Declarative Aspect is the representation used for passing

information between the two parts of the system.

In standard focussing the Learning System performs both gen-

eralisation and discrimination, and the Declarative Aspect is two

sets, one - S - a singleton and the other - G - with many members.

This lack of duality between the treatment of positive and negative

examples and within the Declarative Aspect is much emphasised by

Bundy et al (1985), and is one of the complications within the

standard algorithm. The task of the Performance System is to

D. Gilmore Concept Learning

discover whether an unlabelled example is included in the concept

in S (respond "Yes"), or excluded from the concepts in G (respond

"No"), or neither of these (respond "Don't know"). This task is

complicated by the fact that G may contain more than one concept,

in which case the response is "No- only if the example is excluded

from all the concepts in G.

_. 1. Example 1

Figure 2 displays the description space for all the examples

given in this paper. Although this tree is binary, none of the

algorithms described depends upon this fact. Clearly it is a very

limited space, but it is sufficient to demonstrate the important

points. In the following example the concept to be learnt is any

black object". initially the markers for G are at the top of the

tree, and the markers for S are at the bottom. Thus,

G = (<anycolour anyshape> }; S = (<nocolour noshape> }

(1) Positive example: <black triangle>.

G = { <anycolour anyshape> 1; S = { <black triangle> }.

Given this example, the maximally specific concept must be

that example. There is no reason for G to be altered.

(2) Negative example: <red circle>.

G =(<monochrome anyshape> <anycolour pointed> 1;

S = < (black triangle> }.

The maximally general concept must now exclude red circles.

This can be done by either excluding red objects from the con-

0. Gilmore Concept Learning

N ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - 7 -- - -_ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _

cept, or circular objects. But G's markers need only move

towards S, since eventually S and G must coincide. Thus, G now

contains two possible concepts, each of which would lead to a

correct classification of the two examples seen so far.

(1) Positive example: <black oval>.

G = { <monochrome anyshape> }; S { <black anyshape> }.

This example is inconsistent with one of the concepts in G

(pointed objects), and therefore this concept is removed from

G. Also, S is generalised to include this example.

(4) Unlabelled example: <red triangle>.

This example is not included in the concept in S, nor is it

included in the concepts in G and thus, it cannot be a member

of the concept being learnt. When the system is then told that

"No" was the correct answer, no changes are necessary in G or

S.

G { monochrome anyshape> 1; S = { <black anyshape> }.

(5 Negative example: <white square>.

G = (<black anyshape> }: S = (<black anyshape> 1.

Since this example is included in G's cnncept, it is neces-

sary for G to be altered by discrimination. This produces two

possibilities, but only one of which is towards S.

(6) Unlabelled example: <black circle>.

At this point, when G and S are equal, learning is complete

and unlabelled examples can be classified without doubt. Since

black circles are clearly included in S's concept, the

D. Gilmore Concept Learning

response should be "Yes". Also, it is clear that the concept

Iblack objects' has been successfully learnt.

2.2. Strengths and Weaknesses of Focussing

The above example illustrates most of the important features

of focussing, and from it we can comment on some of the strengths

and weaknesses of the algorithm.

_Z.2.1. Strengths

1) Learning is incremental. This is different from, -or example,

Quinlan's ID3 classification algorithm (Quinlan, 1983), which

requires all examples to be presented simultaneously.

(2) Also unlike 103, focussing produces a compact representation

of the concept being learnt. The algorithm is not distracted

by the presence of irrelevant attributes in the description

space.

(3) Memory for all the training instances is not necessary fnr

learning, since all relevant information is extracted from

each example when it is presented.

(4) There is always a partially learnt concept which can be used

to classify an] unlabelled examples. It is possible to

describe this concept as Dust S, or just (or as both (as the

system above does), in which case the classification can

include -Don' t know".

D. Gilmore Concept Learning

Z.j.j. Weaknesses

(1) The algorithm can only learn conjunctive concepts, since dis-

Junctives lead to overgeneralisation and inconsistencies.

(2) The presence of 'far misses (ie. where discrimination does

not lead to a single solution) can lead to a :;ubstantial

increase in processing load, since they generate a lot of

alternatives within G.

(3) There is a lack of duality in the processing of positive and

negative examples.

(4) There is no capability for handling noisy data.

(5) The description space, which must be specified in advance of

learning, may be inadequate.

j.3. Psychological Issues and Improvements

Of these strengths and weaknesses, it is apparent that most of

the strengths arg important for a psychological model of concept

learning. For example, human learning is clearly incremental, and

also it succeeds without storing all of the training examples. Peo-

ple can also make judgments about unknown examples, even when only

a few examples have been observed.

Likewise the weaknesses are important. Most of them would be

serious weaknesses in a psychological model of concept learning.

The last two, however, have proved to be problematic for much of

the machine learning research, not just focussing. Some attempts

have bean made to deal with these problems, but many of them

D. Gilmore Concept Learning

succeed only at the expense of some of the strengths. Here, we will

discuss attempts to tackle these problems which do not compromise

the strengths of focussing.

The problem of 'far misses' is handled by Bruner et al (1956),

in their psychological model, by processing information from posi-

tive examples only. In doing this they have taken S as their

current concept, and not used G at all. This means that they can-

not tell when learning is complete, though it is not clear that

this is necessary for a psychological model.

Winston (1975) overcame the problem of 'far misses' by only

allowing 'near misses' to be presented as negative examples. Unfor-

tunately, as van Someren (1986) points out, focussing based on

'near misses' alone is inadequate, because the nature of a 'near

miss' is dependent upon the structure of the description space. Van

Someren's solution is to allow domain knowledge to adapt the

description space, in order that previous 'far misses' become 'near

misses*. Similarly, Wielemaker and Bundy (1985) tackle the problem

of the description space, by adjusting the structure of individual

trees. The approach we take here is to reformulate the focussing

algorithm itself, in an attempt to solve the problem of both 'far

misses and disjunctive concepts. The discrimination process is,

therefore, our major interest and it is this which we propose to

adjust.

0. Gilmore Concept Learning

-U

3. AN ALTERNATIVE APPROACH (POSNEG)

3.1. The Algorithm

Figure 3 displays POSNEG according to Holte's distinctions.

The main changes are that the Learning System performs generalisa-

tion only, with the Performance System using discrimination. This

means that the PSDA is simply two maximally specific concepts, one

for the positive examples and one for the negative examples. The

genralisation process is identical to that for standard focussing,

which means that after each example there is a unique maximally

specific concept (positive or negative, depending on the status of

the example). The maximally specific concept for the positive exam-

ples is referred to as POS, and that for the negative examples is

referred to as NEG. In this way there is no distinction between

'far misses and near misses , since they are all summarised as

negative examples. Thus, two of the weaknesses of the standard

algorithm are tackled together.

The discrimination process is very similar in style to stan-

dard focussing, with the difference that it occurs within the Per-

formance System and, instead of discriminating a negative example

from the set G. it discriminates POS from NEG. This means that the

results of the discrimination process de-ine the concept learnt so

far, rather than the current set of maximally general concepts,

which have to be stored for comparison with later examples. Thus

the task of the Performance System is simply to compare an unla-

belled example with the result of discriminating POS and NEG.

D. Gilmore Concept Learning

P 14

.. 1. The discrimination process

(a) If POS = NEG then no discrimination is possible. There is no

description of the concept within the description space

(assuming the examples were correctly classified).

(b) If POS does not contain NEG or overlaps with it then POS is

the concept. Oveerlapping can occur when POS or NEG becomes

overgeneralised. It is assumed that the negative examples are

more likely to be the cause of overgeneralisation.

(c) If POS contains NEG then resolve (see d) the values of the

first attribute and attach them to the remaining values in

POS, and attach the first value in POS to the result of

discriminating the remainder of POS and NEG. In this way at

least two descriptions of the concept are generated. The Per-

formance System will respond "Yes" if the example is included

in any of them (ie. the concept can be disjunctive).

(d) To resolve two values of a particular attribute is to obtain

all the nodes of the attribute tree, which are below the posi-

tive value and not above the negative (this is like discrimi-

nation in the standard algorithm). If there is more than one

such node, then they all define the concept for this attri-

bute. This process allows recovery from overgeneralisation.

Having thus performed discrimination, al? the performance sys-

tem has to do is to evaluate whether the unlabelled example is

included in any concept in the result. This gives rise to a simple

"Yes"/"No" response.

D. Gilmore Concept Learning

£ - _

? 23

3._Z. Example 1 Again

The description space and the concept to be learnt are the

same as for the previous example (ie. all black objects).

NEG = <nocolour noshape>; POS = <nocolour noshape>.

(1) Positive example: <black triangle>.

NEG = <nocolour noshape>; POS = <black triangle>.

(2) Negative example: <red circle>.

NEG = <red circle>: POS = <black triangle>.

POS is not altered following a negative example, so this exam-

ple simply updates NEG.

(3) Positive example: <black oval>.

NEG 2 <red circle>: POS = <black anyshape>.

(4) Unlabelled example: <red triangle>.

At this point the Performance System is required and discrimi-

nation occurs. The result of the discrimination process is

the concept <black anyshape>, since POS does not contain NEG

and thereforp the result of discrimination is POS. Following

discrimination the Performance System checks whether the exam-

ple is included in the result. In this instance it is not and,

thus the response is "No". When the system is told that this

is indeed the correct answer then NEG will be updated by the

now labelled example. Notice that this is the first time that

discrimination has been performed, and that the result is not

stored.

D. Gilmore Concept Learning

NEG = <red anyshape>; POS = <black anyshape>.

(5) Negative example: <white square>

NEG = <anycolour anyshape>; POS = <black anyshape>.

At this point learning is complete as far as negative examples

go. Generalisation of the negative examples has the produced

the most general concept, and no more information can be

obtained from negative examples. Learning will continue when

further positive examples are seen.

(6) Unlabelled example: <black oval>.

The result of the discrimination process is <black anyshape>,

which includes this example and so the response for this exam-

ple is "Yes". Since <black anyshape> is the concept to be

learnt, learning is also complete for the positive examples.

But POSNEG, unlike the standard algorithm, has no way of know-

ing this.

3._. Main Differences with Standard Focussing

I have already described the main differences within the algo-

rithm. In this section I shall outline four implications of these

differences:-

(1) Because POSNEG is revolutionary, rather than evolutionary,

there is a reduction in the potential for high demands on

memory. In standard focussing the results of the discrimina-

tion process must be stored, because they are part of the

Learning System, but in POSNEG, the results of discrimination

D. Gilmore Concept Learning

S.... .. - -

are used by the Performance System and then forgotten.

(2) The Performance System compares unlabelled examples with the

concepts resulting from the discrimination process. This

yields a simple "Yes"/"No" response, whereas standard focuss-

ing can respond "Don't know". However, the Performance System

could be easily changed to offer all three responses, simply

by checking the example against both POS and NEG. Such changes

would not affect the learning system.

(3) POSNEG is symmetrical, since positive and negative examples

are treated in exactly the same way. POSNEG's performance

would not be affected if the negative examples were labelled

as positive and the positive negative, but standard focussing

would almost certainly fail.

(4) POSNEG does not detect inconsistencies. Since either POS or

NEG can become overgeneralised (due to the structure of the

description space), legitimate examples may appear to be

inconsistent. If there is a genuine inconsistency (eg. due to

noisy data) then the discrimination process will fail to work.

However, this failure to detect inconsistency at the time of

presentation enables POSNEG to be able to learn a greater

range of concepts than standard focussing, as in the following

example.

2.4. Example _

Again the description space is as in Figure 2. The example

will be given in both POSNEG and the standard algorithm.

0. Gilmore Concept Learning

2 18

G = (<anycolour anyshape> }; S { <nocolour noshape> }

NEG = <nocolour noshape>; POS = <nocolour noshape>.

(1) Positive example: <red circle>.

G { anycolour anyshape> } S = { <red circle> 1.

NEG <nocnlour noshape>: POS = <red circle>.

(2) Positive example: <greetn oval>.

G = <anycolour anyshape>; S = f <coloured round> }.

NEG = <nocolour noshape>: POS = <coloured round>.

(3) Negative example: <black triangle>.

G { <anycolour round> <coloured anyshape> 1:

S (<coloured round> }.

NEG <black triangle>: POS = <coloured round>.

(4) Negative example: <white square>.

G { <anycolour round> <coloured anyshape> }:

S = (<coloured round> }.

NEG = <monochrome pointed>; POS = <coloured round>.

(5) Positive example: <red triangle>.

G = { <coloured anyshape> 1: S { <coloured anyshape> }.

NEG = <monochrome pointed>: POS : <coloured anyshape>.

At this point the standard algorithm will terminate because G

and S are equivalent, the concept being <coloured anyshape>.

The result of POSNEG's discrimination process is also

0. Gilmore Concept Learning

P i9

<coloured anyshape>, since this excludes NEG.

(6) Positive example: <white oval>.

The standard algorithm fails at this point, because the exam-

ple is not contained within S, but POSNEG simply assimilates

the information into POS.

NEG = <monochrome pninted>: POS = <anycolour anyshape>.

The discrimination process finds that POS contains NEG and the

first twn values are 'resolved', giving the result "coloured".

One result of the discrimination process is thus <coloured

anyshape>, whilst the other depends upon the resolution of

"pointed" and "anyshape" The result of this 'resolve' leads

to the nther result Of the discrimination process, which is

<anycolour round>. Thus, the concept being learnt is

(<coloured anyshape)<anycnlour round>}, ie. ary object which

is either coloured or round - a disjunctive concept.

Thus, POSNEG is capable of learning disjunctive concepts,

which cannot be handled by the standard algorithm. Since the two

algorithms contain basically the same components, it is interesting

to wonder exactly why this difference arises - it is not clear why

postponing the discrimination process should lead to greater power.

In order to understand exactly why this is the case, it is neces-

sary to reexamine our representation of the description space.

0. Gilmore Concept Learning

F -

Pr~

4. THE STRUCTURE OF THE DESCRIPTION SPACE

4.1. A spatial representation

The tree structures which are commonly used to represent the

description space are not the only way of representing it. tn fact,

using tree structures obscures some important aspects of the

focussing algorithm. In this section of the paper the description

space will be described not as a tree, but as a physical space, in

which the area occupied by positive and negative examples is expli-

citly represented. Thus, Figure 4 gives an example of the way the

description space could look, with a clear boundary around all con-

ceivable objects, and subsets within that representing the positive

examples, the negative examples and those contained within {MGC}.

In both algorithms S and POS are equivalent, since they both

summarise the area occsupied by positive examples. However, whereas

NEG summarises the area of negative examples, G summarises its com-

plement, the arT a not occupied by negative examples. When examined

in this way, it is hard to understand why the two algorithms should

produce different results, since it would appear that from NEG it

should always be possible to calculate G. The reason for the

difference, however, lies in the fact that the space in Figure 4 is

unstructured; once structure is imposed then assumptions must be

made about that structure. since it is within this structure that

generalisation and discrimination occur. Each of' the two algorithms

described above makes a different assumption about how to utillse

this structure, and hence gives different results. Without either

of these assumptions the algorithms would, in fact, be the same.

D. Gilmore Concept Learning

P f°

Figure 5 displays a structured space for the description space

of Figure 2, indicating the existence of 16 possible objects.

Within this space we can mark the area of S, or POS, (and use a '

to indicate an actual observed example) and we can also mark G, or

NEG, using a to indicate an observed negative example. The

concepts to be learnt are the rows and columns of the space (and

combinations thereof). It should be emphasised that this is purely

an illustrative representation, since the internal representation

of the description space is exactly the same. Figure 6 illustrates

example 2 in this form, using the standard algorithm. Initially, G

is the whole space, and S is no part of the space. The first posi-

tive example causes S to expand (through generalisation) , and the

negative examples cause G to shrink (through discrimination). In

this way it is possible to see more clearly the significance of a

discrimination which generates two or more concepts within G (see

Figure 6d). For clarity the two possibilities are labelled GI and

G2, the former being necessary to exclude black objects and the

latter to exclude triangular objects. These two possibilites are

exclusive and the focussing algorithm wil use the next examples to

try and distinguish them. In Figure 6f a positive example serves to

re]ect G2, even though no monochrome round objects have been

observed. Thus, a single example can cause large changes in G and

S. This fact prevents the algorithm from coping with the next

example, which is monochrome and round. The reason that this

occurs is that the standard algorithm has made the assumption that

G must always contain S, and therefore when a positive example is

observed which is nnt included in G2 (Fig. 6f), G2 can be rejected.

I have termed this assumption, which is not essential, the "Con-

tainment Assumption".

D. Gilmore Concept Learning

2 f9

The Containment Assumption states, quite reasonably, that any

maximally general concept must contain the maximally specific con-

cept. But it is this assumption that decrees that focussing can

only learn conjunctive concepts, since the assumption only holds

true for such concepts.

Figure 7 illustrates the same example for POSNEG. It reveals

that this algorithm depends upon a different assumption, one which

I have termed the "Structured Negative Assumption". This assumes

that the negative of the concept being learnt will be structured

similarly to the concept itself and, thus, that generalisation can

be applied to the negative examples. Thus, in figure 7f, monochrome

round obhects are simply not known about - they have not yet been

accepted into POS, or rejected by being in NEG. This assumption is

in contrast to the standard algorithm which does not consider the

negative of the concept.

However, it also becomes apparent from Figure 7 that POSNEG

does not really learn disjunctive concepts. instead, it is learning

the reverse of a conjunctive concept. This reveals why the presence

of duality is an important aspect of focussing. For the standard

algorithm it is very important which are the positive and which are

the negative examples, whereas it makes no difference to the sym-

metrical POSNEG. This suggests that, of the two assumptions, the

Structured Negative Assumption may be preferable, since it produces

a more robust algorithm.

It is important to realise that if the assumptions are dropped

then the performance of the two algorithms is the same. The stan-

dard algorithm will generate a set G which contains all concepts

0. Gilmore Concept Learning

I l

? 7

except the given negative examples, since it cannot use S to res-

trict it. POSNEG can only function without its assumption if it

simply remembers all negative examples given so far. Thus the two

algorithms reduce to the idealised representation of Figure 4. How-

ever, without any assumptions the concept learning reduces to lit-

tle more than a memory task, and no predictions could be made about

unlabelled examples.

It has already been suggested that the Structured Negative

Assumption may be preferable, because it produces a symmetrical

algorithm. A further reason for it to be preferred is that it can

be generalised to different learning contexts.

5. MULTIPLE FOCIJSSING (MULTI)

Hunt, Marin and Stone (1966) comment how there are in fact

very few negative instances of concepts, since almost everything is

a positive example of some other concept. Whilst this may not be

true for some rule-learning programs, it does seem to be a valid

comment about concept learning. The significance of this is that

whilst standard focussing can only handle conjunctive concepts, and

POSNEG can only manage with conjunctive positives or conjunctive

negatives, the Structured Negative Assumption can be applied to a

disjunctive concept with a disjunctive negative, if the negative

can be split into two or more conjunctive concepts, For the pur-

poses of what follows it will be assumed that the negative

concept(s) are naturally defined ones, which are given. It may be

possible to develop techniques whereby different divisions of nega-

D. Gilmore Concept Learning

tive instances (-an be calculate. automatically. , *

This is similar to the use of rule shells for learning dis-

Dunctive concepts (as discussed by Bundy et al. 1985). The main

difference, however, is that it is the negative epamples which are

split into two or more groups, not the positive examples. Also, the

groups are labelled from the beginning of learning, r'ther than

from the point where a contradiction occurs. The following program

assumes the examples to be correctly labelled.

5.1. ExamplP I

Using the same description space again, consider the three

concepts,

() Monochrome, round objects or red objects.

(2) Green objects.

(3) Monochrome, pointed objects.

Both algorithms described so far wo ild fail, if they were

required to learn concept 1. The standard algorithm would fail

because of inconsistencies and POSNEG would fail because both POS

and NEG would be <anycolour anyshape>, which would prevent success-

ful discrimination.

However, POSNEG can be adjusted slightly to handle multiple

concepts. The algorithm MULTI -an be given labelled examples of all

(*) For instance, it may be possible to use some measure which
-ompares the distance of the c,,rrent example from both the current
-gitivo concept and the positive concept. If the example is nearer
'he positive concept, then a new negative class is begun, otherwise
the awampla is allocated to the nearest negative concept.

D. Gilmore Concept Learning

r~ 2Nz

three concepts, and successfully learn all three concepts. However,

to achieve this it is necessary that the concepts are hbth

exclusive and exhaustive, since this is an implicit assumption o'

the discrimination process. The only adjustment necessary for t'e

discrimination process is that instead of discriminatlng POS with

NEG, it must discriminate the concept of interest with each or the

negative concepts. This is done by first discriminating with one of

them, then discriminating the result of this with another, and the

result of this with another etc. etc. The resultant list of con-

cepts represents disjunctively the concept of interest.

Consider the following sequence of training examples. Ini-

tially CONI, CON2 and CON3 are all equal to <nocolour noshape>.

(1) Example of concept 1: <red square>.

CONI = <red square>; CON2 = <nocolour noshape>; CON3

<nocolour ncshape>.

(2) Example of concept 3: <white triangle>.

CON1 = <red square>; CON2 = <nocolour noshape>; CON3

<white triangle>.

(3) Example of concept 1: <black square>.

CON1 = <red square>; CON2 =<nocolour noshape>; CON3

<monchrome pointed>.

(4) Example of concept 1: <white circle>.

CON1 = <anycolour anyshape>; CON2 = <nocolour noshape>;

CON3 = <monochrome pointed>.

D. Gilmore Concept Learning

(5) Example of concept 2: <green circle>.

CONI = <anycolour anyshape>: CON2 <green circle>:

CON3 = <monochrome pointed>.

(6) Example of concept 2: <green square>.

CONI = <anycolour anyshape>; CON2 <green anyshape>;

CON3 = <monochrome pointed>.

Note how as with POSNEG none of the inconsistencies has been

detected; this is because no discrimination has occurred. To

describe each concept (or to classify an unlabelled example)

then discrimination must occur. For concepts CON2 and CON3

this results in themselves being the concept, since they each

overlap with, or do not contain the other two concepts. How-

ever, CON1 can only be described through the 'resolve' opera-

tion. Initially MULTI discriminates CON1 and CON2 which gives

the result (<red anyshape> <monochrome anyshape>}, and then

each of these is discriminated with CON3, giving the result

{<:.-d anyshape><monochrome round>}.

Thus, MULTI can learn more complex disjunctive concepts than

POSNEG can. Even so it depends upon the existence of only 1 dis-

junctive concept, since more than one would lead to overgeneralisa-

tion on both of them, and the discrimination process would be

unable to distinguish which values of which attributes discriminate

the two. However, it is important to realise that this generalisa-

tion is only possible with the Structured Negative Assumption, and

not with the Containment Assumption, because of the symmetricality

of the algorithm. But, apart from the difference in duality, there

is not much difference between the algorithms. They use the

0. Gilmore Concept Learning

P 2 7

supplied structure of the description space to generalise and

discriminate. Neither of these processes is particularly compli-

cated, and what the spatial representation of the description space

makes clear is that the real determinant of the success of focuss-

ing is the structure of the description space itself.

6. SUMMARY AND IMPLICATIONS

This paper has presented an alternative focussing algorithm,

and it has demonstrated that there is a core algorithm underlying

both, which simply compares the positive examples seen with all

possible positive examples, given the observed negative examples.

The standard algorithm and POSNEG (and MULTI, too) make assumptions

about the relationship between the structure of the description

space and the algorithm, in order to prevent the brute force search

of all possibilities.

However, the Containment Assumption used by the standard algo-

rithm produces a program which lacks duality, which can only handle

conjunctive concepts and which cannot be generalised easily. By

contrast, the Structured Negative Assumption produces a symmetrical

algorithm, which handles a small set of disjunctive concepts, and

which can be generalised to the learning of more tha i one concept.

8y discussing small examples, and representing the description

space as an n-dimensional space, it has become clear that the

focussing methods discussed depend upon the existence of conjunc-

tive concepts, even when the main concept is not conjunctive. This

may be true for the two assumptions discussed here, but there may

D. Gilmore Concept Learning

f 32

be others to which it does not apply. An area of interesting

research would be to examine other possible ways of constraining

the search for the concept.

However, the main implication of this analysis is the

overwhelming importance of the structure of description space. The

set of concepts which can be learnt by these algorithms depends

crucially on whether the given structure maps onto the structure

within tlie concept. Although the new assumptions described here

make the algorithms slightly more powerful, the only way to dramti-

cally concept learning performance is to be able to change, dynami-

cally, the structure of the description space. This is being

attempted by Wielemaker and 8undy (1985), and by van Someren

(19386). However, their approaches are only to be used when incon-

sistencies occur in the example set, whereas it would seem desir-

able to find a way of checking for patterns in the examples.

In much of human learning the relevant structure of an

attribute's values has to be inferred from the examples. For exam-

ple. people cope well with concepts which involve numbers, even

though such an attribute cannot be readily represented as a tree

structure. People can structure a numerical attricute into primes,

even numbers, multiples of <n>, etc. etc. An important question,

therefore, for machine learning is to discover techniques for

dynamically varying the structure of the description space, and to

discover whether there are any constraints (psychological or other-

wise) on the restructurings which can be performed.

D. Gilmore Concept Learning

-A

ACKNOWLEDGMENTS

I would like to thank John Self, Stephen Payne and Louise
O'Callagha~n for their fruitful discussions on the problems of c-on-

cept learning, both by machines and by people. This research was
carried out under a UJK Science and Engineering Research Council
grant, number GR/D/16079.

REFERENCES

Bruner, 1.S., Goodnow,).A. and Austin, G.A. (1956) A StudvO
Thinking, Wiley, New York.

Bundy, A., Silver, B. and Plummer, D. (1985) "A review of
rule-learning programs." Artificial Intelligence, 27, 137 - 181.

Holte, R.C. (1986) "Alternative information structures in
incremental learning systems." Paper presented at the European
Working Session on Learning, Orsay, Paris, January, 1986.

Hunt, E.B.. Marin, J. and Stone, P.). (1966) Experiments In

IndUCtion, Academic Press, New York.

Quinlan. j.R. (1983) "Learning efficient classification pro-
cedures and their application to chess end games." In Michalski,
R.S., Carbonell,).G. and Mitchell, T.M. (Eds.) Machine Learning:
An Artificial Intel.lig~ence Apo)roach, Tioga Pub. Co., Palo Alto.

van Someren. M.W. (1986) ..Constructive induction rules:
reducing the description space for rule learning." Paper presented
at the EUropean Working Session on Learning, Orsay, Paris, January,
1986 .

Wielemaker. 1. and Bundy, A. (1985) "Altering the description
space for focusqlng." Paper presentpd at Expert Systems - Oi
Warwick, Fn9 land.

Winston, P.H. (1975' "Learning structural descriptions from
examples." In Winston, P.H. (Ed) The Pqyr-hnlogv Of Computer Vision,
McGraw-Hill.

D. Gilmore Concept Learning

Figure 1: Standard focussing algorithm using Holte's

(1986) representation.

P 30

I LEARNING SYSTEM (LS) I

P ---- Generalisation < -------- Positive examples

I I I

Discrimination < ---------- Negative examplesI II I
I II I
I II I

------ --------------
I I
f I

V V
MSC (MGC } PERFORMANCE SYSTEM

DECLARATIVE ASPECT (PSDA)
I I
I I

--- ------ ------
I I I I

I I < .----------- Unlabelled examplesI I
1 V V

I I
Below MSCI Above (MGC}? I

I I
---------------.---- > Response

PERFORMANCE SYSTEM (PS) I
- --- -

Figure 2: The Description Space used throughout this paper.

P 31

anycolour
anyshape

/ \ I \

/ \/\

coloured monochrome pointed round

/ \ I \ I \ / \

red green black white triangle square oval circle

I I I I I 1 - II I I I I I I I

.... nocolour noshape-------

Figure 3: The POSNEG focussing algorithm using Holte's
(I86) representation.

LEARNING SYSTEM (LS)

< ----.---- Positive examples
Generalisation I

< --------- Negative examplesI I I I
I I I I

------- -- ---------

I I

V V
POS NEG PERFORMANCE SYSTEM

DECLARATIVE ASPECT (PSDA)

I I

I I I I
I--------- Unlabelled examples

I V V
I I

Discrimination

& ---- --- > Response

Evaluation II I

PERFORMANCE SYSTEM (PS) I

Figure 4: A spatial representation of the description n:,.
space. (The outer box contains all possible
objects in the space.)

I -re
I+ I

I----------- - - -- - - - -- - - -

Figure 5: An alternative representation of the

description space of figure 2.

P 34

anyshape

pointed round

squ tri ovi cir
S+-
I I I I I

red I I I I I
coloured -

green I I I I I
I I I I I

anycolour ---------------------
I I I I I

black I I I I
monochrome -

white I I I I
I I I I I

Figure 6: An illustration of the description space during

example 2 for the standard algorithm.

squ tri ovl cir S t 0 c
(a) ------ -------------- (b) ----------

I I I I I I I I I +
red 1G IG I G I G I r IG I G I G IS I

- ----------- 4--------------

green I I I I g I I I I I
I G I G I G I G I positive I G I G I G I G I
------------------- - > ------- ----- +

I I I I I red I I I I I
black I G I G I G I G I circle b I G I G I G I G I

- ----------- ------------------

white I I I I I w I I I I
G G I G I G I G I G I G I

------ -------. --------------

s t 0 c s t 0 c
(c) --------------------- (d)

I I I I + I I I I I I
r i G I G I S I S I r I GI I G1 I S I S I

- - ----------- -------------

gI I + I gII I I
Pos. I G I G I S I S N Neg. I G1 I G1 I S I S I

-> -------- > --

green I I I I I black I I _ I I I
oval b I I G I 6 I G I triangle b I I I G2 I G2 I

*--------------- ---------------

w I I I I I w I I I I I
I G I G I G [G f I G2 I G2 I
*--------------- ----------------

s t 0 c s t 0 c
(e) ---------------------- (f) - ----------

I I I I + i I I + I I I
r I G1 I G1 I S I S I r I S I S I S I S I

4------- M----------------------------

g i I I + I I g I I I + I I
Neg. I G1 I GI I S I S I Pos. I S I S I S I S I

----- > - ----------- > ------------

white I I . I I I red I I. _ I I I
squ. b I I I G2 I G2 I triangle b I I I I I

----- ------- - -----------

w _ I I I I w I _ I I I I
I I 162 21I I I I I I
---------------- ------ --------

s t 0 C
(g) ---------- --

I I + I I +1
r I S IS IS Is I

4 - -----------

g I I I + I I
Pos. I S I S I S I S I Following this last positive example

--- > ------- --------------- it is clear that the example is not

white I I - I I I contained within S.

oval bI I I I I
*------M---------

I I I I I

Figure 7: An illustration of the description space

during example 2, for POSNEG.
C3

squ tri ovi cir s t 0 c
(a) -b) ---------------------

I I I I I I I I I + l
red I I I I I r I I I I P I

---- -------- --------------------

green I I I I g1 I
I I I I I positive I I I I I
*------------------ >---------------------

I I I I red I I I I I
black I I I I I circle bI I I I I

---------------------------- 4.-----------

white I I I I w I I I I II I I I I I I I I I
--------------------- ---------------------

s t 0 c s t 0 c
(C) --------------------- * (d) ---------------------

I I I I I I I I I + 1
r I I I P I P I r I I I P I P I

I I I + I 1 I 1 + I I
Pos. I I I P I P I Neg. I I I P I P I

----- > --------------------- ----- > -
green I I I I I black I I - I I I
oval b I I I I I triangle b I I N I I I

---------------- ---------------w i I I I I w i I I I I
I I I I I I I I I I
---------------------- --------------------

s t 0 c S t 0 c
(e) -------------------- () ---------------------+

I I I I I I I I I I
rI I IP IPI rip IP IP IP
----------- -------------------
Il I I -+ I I g I I I - I I

Neg. I I I P I P I Pos. I P I P I P I P I
. .----> ------------------------- ------ > -----------+----
white I I - 1I red I I - I I I
squ. b I N I N I I I triangle b I N I N I I I

---------------- ---------------

W l - I I I I w I - I I I I
I N I N I I I IN I N I I I
4.-------------- ----------------

s t 0 c

(g) -------------------.
I I 1 I -' I

rIP IP IP IP I
---------------------------- 4.

g I I I I I
Pos. I P I P I P I P I Following this last positive example

-----> --------------------- the set POS extends to the whole space
white I I - I I I except NEG, thus learning the concept.
oval b I N I N I P I P I

w I - I I * I I

IN IN IP IP I

DISCOVERY OF ALGORITHMS
FROM WEAK METHODS

Armand E. Prieditis

Computer Science Department
Rutgers University

New Brunswick, NJ 08903
ARPAnet address: PRIED ITISQRUTG ERS

July 1986

Keywords: algorithm discovery, explanation-based generalization, goal regression. learning
of algorithms, planning, problem-solving.

Abstract

Weak problem-solving methods (e.g. means-ends analysis. breadth-first search.
best-first search) all involve a search for some sequence of operators that will lead
from an initial state to a goal state. This paper shows how it is possible to learn
operators whose bodies contain algorithmic control constructs (e.g. loops, sequences.
conditionals) such that the control construct itself applies the sequence needed to
lead from the initial state to a goal state unthout a search for the sequence. By
using explanation-based generalization (Mitchell, 1986) and an explicit theory of
algorithms, the method learns operators (whose bodies contain algorithmic control
constructs) that represent logically valid generalizations of the solution sequence.

1. Introduction
What are algorithms and where do they come from? How are algorithms discovered and

learned from weak problem-solving methods? This paper presents a method for learning
compound operators' whose bodies contain explicit algorithmic control constructs such as
sequences. conditionals, and loops (expressed here as tail recursion) from single examples of
solution sequences in the blocks-world domain. Explanation-based generalization2 and a
theory of algorithms provides a logically valid basis for the learning. This section first
gives a general statement of the problem and describes why current methods were
inadequate to deal with learning complex algorithmic control constructs. Next. the
algorithm learning problem is presented in table 1-1 along with a brief discussion of

IThe operators shon- in this paper use a STRIPS-style (Fikes, et &l.. 197") ',presentation along with an operator

body The appendix lists the four primitive operators in the blocks world domain.

I.See (Mitcheil. 1986. DeJong. 1983. Minion. 1984. Mabadevan. 1985. Utgoff, 1984) for more detailed discussions
and comparisons af the term 'expianation-based generaliZation"

notation used and how the algorithm learning problem relates to expianat:on-based
generalization. This section concludes with an outline of the general method for the
discovery of algorithms.

The rest of the paper is organized as follows. Section 2 presents one particular algorithm
theory (that of repeated loops represented as tail recursion) and examines algorithm
discovery and learning in the task of destroying a particular tower composed of three
blocks. The example is interesting from another perspective since it also demonstrates the
learning and representation of a complex concept: a tower of any number of blocks. Finally,
section 3 discusses some future directions, limitations and summarizes the paper.

1.1. Statement of the Problem
This research addresses the problem of learning operators whose bodies contain algorithmic

control constructs that represent a generalization of the solution sequence obtained from a
weak method. .Machine learning and automatic programming research have each examined
learning general algorithmic control constructs from examples traces of problem-solving
behavior from different perspectives.

In the machine learning research on learning algorithmic macro-operators (or chucks) 3 that
represent compilations of sequences, two problem arise. First, though the macro-operators
do have bodies that contain algorithmic control constructs which represent solution
sequences (either explicitly or implicitly as is the case of a chunk), they could never
contain other more complex control constructs such as loops (or a chunked concept
representing an arbitrary number of particular chunks that repeat) since the learning
systems lacked an explicit theory of other control constructs.

Second. as mentioned above, the learning systems do have a theory of sequences so that
algorithmic constructs that represent sequences can be learnea. but the theory is implicitly
embedded into the learning system's procedures under the assumption that onlyt sequences
will be learned. So, while a macro-operator such as unstack-putdown(x.y) (beiow) could
be learned. operators representing repeated application of unstack-putdown an arbitrary
number of times could not be learned.

uns tack- put down (x.y)
P: {HA.'NDE.\tPTY.CLEAR(x),O N(x.y)}
D: {ON(x.y)}
A: {CLEAR(:).O.NTABLE(x)}
BODY: unstack(x.y),

putdow-n(x).

Automatic programming literature, 4 on the other hand. describes programs that did induce
more complex algorithmic control constructs (such as loops) from example traces. but the
methods described lacked the logically valid basis for generalizing from t"e exairmes and
typically relied on many training examples. Explanation-based generalization EBG' and the
algorithm theory together provide the logically valid basis for generalizing from single
examples of solution traces and the type of inductive generalization that occurs in

ISee fKorf. 1985. Mabadean, 1985, Laird. et at.. 1984) for excellent examples of macro-operator learnwg, learni g
compdationa of proofs, and chunking respectively

4See (Bauer. 1977. Phillips. 197". Siklossy, 19771 for some examples.

A

automatic programming.
Explanation-based generalization provides the justification for considering only those

parameters in an operator that are important for achieving a general goal and the
algorhthm theory describes. in general, how new operators which contain algorithmic cont,-oi

constructs in their bodies are constructed. Derived from standard methods used in algorithm
verification and proving programs correct (Hoare. 1973. Manna, 1974. iili, 1985). the
theory represents in essence compiled knowledge about the proofs used to verify various
aigorithmic constructs in general.

Table 1-I summarizes the general algorithm learning problem with specific references to
the example that will be shown in section 2. The table roughly corresponds to that of
(Nitchell. 1986)--which states the general EBG problem for integral calculus. The
similarities and differences between (Mitchell. 1986) and the table are discussed below-

Here the goal concept. CONSTRAINTS(x,s), is a class of constraints on an
object. x, and on a state s, such that application of a sequence will lead to the
general goal. In (Mitchell, 1986 the goal concept was "when it is useful to
apply a particular operator' such that it will lead to a general goal. The
particular operator was the firt in a sequence of operators leading to the
general goal. As will be shown later in section 2. the object x referenced in the
goal concept adlows for justifiable parameterization.

* As in Nlitchell. 1986) the domain theory relates the predicates SOLVABLE and
SOLVED to features that are directly testable in the proolem state: in this
case HANDENIPTY. ON, and CLEAR. SOLVED and SOLVABLE are
predicates that embody some knowledge about search.

* Here algorithm theory and operators are part of the explicit inputs.

- Here the goal is to discover new operators that contain algorithmic control
constructs in their bodies and not search control heuristics as in (Nitchell.
19861. Note that search control heuristics on each of the operators in a
sequence may actually make the problem solver apply the entire sequence in
sequence as would a single algorithm which contained the control structures
needed to execute the exact sequence, except that there is no guarantee the
problem solver would make all of the correct choices under the time or memory
constraints of the problem-solver. In fact, in the case of repeated operator
application, there is no deterministic knowledge the problem-solver could use to
apply the operator repeatedly without considering other potential operators.

1.2. The General Method
This section describes the general method in five steps and then examines the five steps

in more detail. The five steps will be shown again for the particular example in section 2.

Table 1-1: THE ALGORTTH M LEAR.NI-NG PROBLEM

Given:

Goal Coricevt: A class of constraits about an object. x. on a st ace, s. such that
CONSTRAI.NTS(x.s) holds. That is. the set of states that will lead to a given
goal by a set of algorithm applications. The particular goal concept used in [he
example is CONSTRAINTS(C.O).

CONSTRAINTS(x.s) -- NOT('SOLVED(x,s)) SOL%'ABLE(x.s)

*Operators: A set o~f tne currently known problem-solving operators such as
pickup. putdow-n.

. Training Ezamvie: The initial state is referenced by the number 0, %%here
HOLDS({ION(.A.B).ONiB.C' .CLE.ARR M.ONTAkBLE(C) .H-ANDEMvPTY}.0).

* Domaint ThieorWj

SOLVABLE(x.s) *(:-op) (S-OLVED(x.result(op.s))
SOL VABLE~x., esult (op.s)))

(E:y)HOLDS({O.N(y..x)1.s) =,NOT(SOLVED(x.s))
HOLDS({CLEAR(x).HA-NDENtPTY} .sI SOLV'ED(x.s)
HOLDS(z.applylop.5)) * 1HOLDS REGRESSS z.op),sJ

* Overattorzalitt, Crzter,2on: The concept must be expressed in terms of H-OLD-5(x.s)
where x is a description of a state using predicates recognized by the problem-

solver (e.g. ON. CLEAR. H-ANDEMPTY) and s is the initial state (in this case

.J.4:gorithm Theor'j: .- t.heor% that describes the semantics of algorithms. An
example of a particular theory is one that describes the semantics of repeating

operator application in terms' of the operator that repeats and the argument
stvucture between any two consecutive instances of the repeating operator.

Discover:

0 .Vew Operators: Operators that contain algorithmic control constructs in their
bodies along with the parameters to the algorithm. The bodies are a
generalization of the sequence of operators that was applied in the training

example. The preconditions of the operator are sufficient to guarantee the
general goal (in this case HOLDS({CLEAR(x).ANDEM'PTY}.s) after the

operator application. In the example the parameter is x.

Given the inputs described in table 1-1. the general method for discovering and learning
algorithms can be summarized by the following steps:

STEP 1. Restate the goal concept by finding the weakest preconditions for a sequence of
operators such that the specific goal will still hold.

STEP 2. Discover algorithmic control constructs .in the solution sequence.

STEP 3. Find the specialization of the discovered operator's preconditions such that it
implies the weakest precondition from step one.

STEP 4. Regress the general goal concept through the discovered operator's preconditions
with the bindings that specialized the discovered operator's preconditions.

STEP 5. Instantiate the discovered operator with the generalization obtained from step
four.

Step 1 corresponds to EBG without the finai step of regressing the general goal concept
through the explanation structure. As shown in table 1-1 the goal concept specifies the
object or objects (x), mentioned in the goal state and the state (s). Given that the goal
state specifies constraints5 on specific object or objects (x). the weakest precondition is
expressed as a general class of constraints on the objects or object (x) mentioned in the
goal and a state (s). 6 The result is a statement that shows the general class of constraints
on an object implies the goal concept.

Step 2 uses an algorithm theory that contains template-like knowledge about how to build
new operators from existing ones--that is. how more complex operators are semantically
defined in terms of simpler ones. The existing operators appear in the solution sequence
from the explanation structure.

In step 3 it is important to recall that the general class of constraints from step 1
representi the weakest precondition of the sequence with respect to a general goal. The
specialization, in the form of variable bindings in the discovered operator's preconditions to
objects mentioned in- the goal concept (x), tunes the algorithm to the general goal--in this
case HOLDS((CLEAR(x).HANDEMPTY).s).

Step 4 provides the logical justification for parameterizing the discovered operator
according to the goal. From step 2, the discovered operators certainly did have parameters.
however, they were not tuned to the general goal.

Step 5 simply adds the new operator to the existing set of operators. The parameters to
the new operator are the objects or object referenced in the goal concept (x).

This section has shown how current learning techniques were inadequate in two ways for
learning complex control constructs other than sequences. One inadequacy stemmed from
not having an explicit theory of the algorithmic constructs over which the generalization

5 An example of a constraint on an object C is clear(C).

6 The predicate HOLDS(u.s) is umed to denote a description u that is true in a state s. The initial state is

referenced by 0. For example. HOLDS({clear(C)),0) states that object C is cltar in the state referenced b 0. All
other states are the result of applying some operator to a state (i.e. HOLDS(x.result(op.s)) states that x is true as
a resul of applying action a to S).

p 42

was occurring. The other inadequacy was lack of logical justification for inducing certain
algorithmic constructs. A method was presented that showed how the inadequacy could be
dealt with. The general algorithm learning problem--it's inputs and outputs--was presented
along with a discussion of the general method. The next section re-examines each of the
five steps of the general method in a specific example.

2. Examples

Figure 2-1: THE SEQUENCE OF OPERATORS APPLIED IN
THE EXPLANATION OF CONSTRALNTS(C,0)

This section presents one particular algorithm theory and demonstrates how an operator is
learned from a single example. The particular training example consists of the left-most
state (denoted by 0) shown in figure 2-1. Blocks with the bristles on top of them represent
the notion of CLEAR. The exact sequence of operators is shown in the explanation of
CONSTRAINTS(C,0) in figure 2-2. The resulting algorithmic construct is one which
unstacks all the blocks from a given block. The rest of this section consists of a brief
explanation of the general algorithm theory used and is followed by a trace of the five
steps outlined in section 1. The section concludes with a short discussion of the learning
process.

The general algorithm theory of a looping construct is shown in the top of figure 2-3.
The theory can be viewed as a template that instantiates a new operator given existing
operators and the general pattern of arguments between any two consecutive instances of
existing operators. For purposes of presentation. the template is shown in boldface and the
arguments that are evaluated are in italics so that the general theory of the looping
construct can later be compared to the middle of figure 2-3-- the portion that represents the
particular instantiation that will be learned from the example. The operator that actually
repeats is included in the bottom of figure 2-3 for reference.

Once an operator has been found that repeats at least twice in the solution sequence. the
general patterns of two consecutive instances of its arguments can be obtained easily from
the explanation structure. Suppose. as in the example, that the general pattern of of any
two consecutive instances of an operator called unstack-putdown is (ul,u2) and (u2,u3).
The algorithm theory claims that a new operator can be instantiated that represents the
repeating vers.on of unstack-putdown (called r-unstack-putdown) with a certain list

F 417

Figure 2-2: EXPLANATION OF CONSTRAI-N-TS(C,O)

EXPLANATION STRUCTURE

CONSTRAINTS(C .0)

T

NOT(SOLVED(C,0)) SLABLE(C .0)

II ~ ~SOLV ABLE(C result(unstack(A ,B) .0))
-IOLDS((OFE(yj,C)),0) I

SOLVABLE(C,result(putdown (A), result(unstack(A,B),0)))

I
SOLV ABLE(C,resijlt(unstack(B ,C) ,result(putdown(A) ,result(unstack(A .8) .))))

SOL VED (C , resu lt(putdo w n(8), resu lt(uns tack(8 ,C),resu It(putdown(A),
result(unstack(A .8)0)))))

T
I4OLDS((CLE AR(C) ,H ANDEMPTY) ,result(putdown(B) ,result(unstack(B ,C),

r esu lt(pu tdowun(A) ,r esu It(uns tack(A .B) .0)))))

HOLDS(REGRESS((CLE AR(C),H1 ANOEMPTY),putdown),
result(unstack(B ,C), result(putdown(A) ,result(unstack(AB) .0)))))

I4OLDS(REGRESS(REGRESS(REGRESS(REGRESS((CLE AR(C) ,HANDEMPTY),
putdown) .unstack) ,putdovn) ,unstack),0)

I ~- OPERATIONALIZE

IIOLDS({CLE AR(u 1) ON(ut .u2) .0N(u2,.C) ,HAMDEMPTY),.0)

F 44

structure as its argument.
The list structure represents a compaction oi" common objects referenced throughout the

looping construct. The list structure is bun:t by noting the common portions of the two
argument instances argsl and args2 (in zne above case (ul.u2) and (u 2 .L3)) and by
combining them into one (ul.u2.u3) so that any given triple in the list structure can be.
decomposed again into the original arguments. Some simple sorting permutation is done to
get matching arguments right-most in argsl and left-most in args2. The sorted version of

argsl is denoted by sorti and the sorted version of args2 is denoted by sort2 in the figure.
These sorted portions are used throughout the template so that the functions can properly

understand the list structures. In the above case nothing needs to be sorted. But, in
general the arguments to an operator can be rearranged without any ill effects since the
operator still references the correct arguments. Note that references to the original argsl
and args2 of particular preconditions, deletions, and additions sets in the template still
remain the same-thus insuring that any scrambling of arguments by the sorting leaves the
effects unchanged.

The functions Pov/dhJ), D0 p(,1) and .4,V,. return the preconditions, deletions and

additions set of op with args. For example:

P= {HOLDING(ul)}
.4 up(c;= {HOLDING(C)}

The three recursive functions p-rop, d-rop and a-rop, defined on the second page of
figure 2-3. return a set of constraints for arbi-rarily long lists. For example, the function
p-rop returns a set which defines part of the operator's preconditions. Intuitively. the
function p-rop returns the preconditions of the operator with the second set of arguments
(i.e. the set consists of constraints that arent already" in the preconditions of the previous

operator application and those that aren't in the previous operator's add list) and then it
-ecursively does the same thing for the nex: set of arguments. The functions d-rop and
a-rop similarly return sets that represent the results of applying an operator to the

members of a list in some particular fashion. The body in the template contains the tail-
recursive implementation of looping. The next five steps show operator discovery and
learning in the training example.

STEP i. Restate -he goal concept by finding the weakest preconditions for a sequence of
operators such that the specific goal will still hold. From figure 2-2 the goal concept of
CONSTRAINTS(C.0) can now be restated as:

(_:y)HOLDS({ON(y,C)}.0) , HOLDS({CLEAR(ul),ON(ul.u2),
ON(u2.C).HANDEMPTY}.0) =- CONSTRAINTS(C.,0)

Since the second conjunct in the antecedent is more specific than the first, the first
conjunct can be eliminated:

HOLDS({CLEAR(ul),ON(ul,u2),ON(u2,C).HANDENIPTY}.0)v CONSTRAINTS(C,0)

7A Prolog-lik. list structure represenitaioO is used in thi paper. Fo- example: A.B.C: is a list with three

elements in it; hiti is a list with h as its head and as its tail. The reason that this representation is that it

avoide referring to functions such as cdr" and 'cons' or 'tail" and *head', which seem to complicate the

appearance o(expressions occasionally.

P 45

Figure 2-3: THE GENERAL ALGORITHM THEORY OF
LOOPING AND AN INSTANTIATION

The General Theory for Looping Constructs:

(op(... result (op(args 2),result (op(args 1),3))

r-opops srt.1t)

D: D~,I, d-r-op('sortlit)

A: a-r~op(isore1:')
BODY:

b-r-op(rcombt) <-- op(argsl),
b-r- op{ sort 2!t').

continued on next page

The Instantiated Looping Construct

r-uns tack-pu tdown ('u l,u2t Jl)
P:. (HAND EMPTY, CLEAR(u1), ON (ul1,u2))} p-r-unstack-put down ('u1,u2 t')
D: {ON(ul,u2)} d-r-unstack-pu tdown u 1,u!, t)
A: a-r-unstack-put down(ruI1,u2! t 1)
BODY:

b-r-uns tack- put down('u 1,u 2) <-- uns tack-put down (u 1,u2).
b-r-uns tack-put down(.uI1,u 2,u3It!) <--- unstack-pu tdown (u1,u 2),

b-r-unstack-putdown(u2,u3tl)

continued on next page

The Existing Operator Used in the Instantiation:

uns tack- put down (xy)
P: (HAND EMPTY.C LEAR(x).ON(x,y)}
D: {ON(x~y)}
A: JCLEAR(y),ONTABLE(x)}
BODY: unstacklx,y),

putdown(x).

Pr

P 46

Figure 2-3, continued

The General Theory for Looping Constructs:

p-r-op('sort1j) = o
p-r-op(combjtj) = (P P*722j) oP"(args1)) -

4 3Pfarq~j)j' p-r-op([sort 91t1)

hd-r-op('sort1j) =0
d-r-op('combltl) = -DP472 '4parq d-r-op([sort2jt1)

a-r-op(>sortll) = .4 ,pag1

a-r-op~lcombit]) = (,4, a-r-op(1sort2lt1)

The Instantiated Looping Construct:

p-r-unst ack-put down ('u 1,u2) =

P-r-unstack-put down ('ul,u2,u3It) = ON(u2,u3) }
p-r-unstack-put down (u2,u3 t)

d-r-unstack-putdowm(u1,u2') 0

d-r-unstack-putdown(u,u2,u3ltl) = {ON(u2,u3) }
d-r-unstack-put down (u2,u3 t)

a-r-uns tack-p ut down (,u ,u2!) = {CLEAR(u2),ONTABLE(u) }
*a-r-unstack-putdown(u,u2,u3tl,) {CLEAR(u2),ONTABLE(ul) }

a-r- uns tack-put down (' 2,u3j t)

The Existing Operator Used in the Instantiation:

unstack-put down (x.v)
P: (HAND EMPTY,CL EAR (x),ON(x~y)}
D: {ON\(x,y)}
A: {CLEAR(y).ONTABLE(x)}
BODY: unstack(xy),

put dow (x).

P 47

STEP 2. Discover algorithmic control constructs in the solution sequence. Some simple
searching reveals a looping construct in the sequence of operators found in the explanation.
The operator that repeats is constructed by using another algorithm theory8 The sequence
operator unstack-putdown is shown at the bottom of figure 2-3.

From the explanation structure, the general pattern of arguments between any two
instances of unstack-putdow-n is unstack-putdown(ul.u2) and unstack-putdown(u2.u3)
and that pattern holds throughout the repeating sequence. The resulting algorithm that
represents unstack-putdown repeating an arbitrary number of times with- the pattern of
(ul.u2) and (u2,u3) holding throughout the sequence is instantiated as .zhown in the middle
portion of 2-3. Below is an example of the returned set of constraints on the objects in
the argument list. Note that the list can be any length.

Pr.u,,cack.putdow, A.B.CD!) = { HANDE.MPTY.CLEAR(A),ON(A.B),ON(B.C),ON(C.D)}

Dr-unstack.pUdo' 1.jA.B.C.D) = {ON(A.B),ON(B,C),ON(C.D)}

Ar.unstack.putdown(,A.B,C.D!) = {CLEAR(B),ONTABLE(A).CLE.R(C).ONTABLE(B),
CLEAR(D),ONTABLE(C)}

STEP 3. Find the specialization of the discovered 'operator's preconditions such that it
implies the weakest precondition from step 1. A subscript is added to the function to
denote the specialization.

H O L DS (P, p LP.)

HOLDS({CLEAR(ul),ON(ul.u2).ONiu2.C),HANDEMPTY}.0) CONSTRAINTS C.0)

By simply matching the precondition function to the weakest precondition obtained from
step 1 the following bindings occur:

p-r-unstack-putdown,('ulC') =
p-r-unstack-putdown,('uI.u2.u3 t') = {ON(u2.u3)}
p-r-unstack-putdown('u2,u3: t')

STEPS 4 and 5. Regress the general goal concept through the discovered operator's
preconditions and instantiate the discovered operator. Finally, the general goal concept of
CONSTRAINTS(x,s) is regressed through the above implication and the instantiated
algorithm now contains a reference to x as its last list element in the preconditions.
deletions and additions set as below and the parameter x.

8
Not shown here. The sequence theory i not very difficult to understand. The theory references two algorithms

and their arguments and combines the two into one.

P 48

r-unstack-putdown1 (x)
P: {HAND ENPTY,CLEAR(ul1),ON(ul1,u2))} p-r-unstack-putdown.('ul.u2 t')
D: {0N(ul~u2)} dl-r-unstack-putdown.('u,u>&)
A: a-r-urstackputdown('ui,u2Y')
BODY:

b.runstackputdown(ui.x) <-- unstack-putdown.(ul,x).
b-r-unstack-putdown.(tul,u2,u3 t*) <--- unstack-putdownx(ul,u2).

b-r-unstack-putdown,,(u2,u3:t,)
p-r-unstack-putdown.(ui,x) =

>.runstack-putdown.(ul.u2,u3:t;) ={ON(u2,u3)}

p-r-unstack-putdown.('u2,u3 ~tD'

dl-r-unstack-putdown2 (u1.xl) =

d-r- unstack- put down,,('u1,u2,u3! t) ={ON(u2.u3)}

d-r-unstack-putdown.("u2,u3!t,)

a-r-unstack-putdown,('u1.x) = CLEAR(x).ONTA-BLE(ul)}

a-r-unstack-putdownx(u1,u,2,u~t) = CLE.AR(u2).ONTABLE(uI)}
a-r-unstack-putdown.(,u2.u3't*)

The problem solver now knows everything there is to know about clearing off all the
blocks from a gi,-en block by invoking the operator r-unstack-put down..

2.1. Discussion
The operator that was finally learned represents a specialization or restriction of the

operator originally obtained from the theory. Since the goal only specified that a certain
block was to be cleared and the hand to be empty, the algorithm became tuned to this

.particular concept as a result of the last two steps. The operator can now clear off
arbitrarily many blocks off a given block. Figure 2-4 shows the sorts of problems that it

can now solve. Note that there is no reference to the fact that the given block. x, must
be on the table and so that block is shown as 'floating" because it doesn't matter where it

is :ocated. When the operator is applied its preconditions will result in the binding of a list
of all the objects on top of x. During execution the algorithm will proceed to unstack all
the objects from x and place them on the table by calling unstack-putdow until all the
objects have been cleared from the given object and it will do so in the correct order since
the list structure has preserved the sequentiality needed.

Another interesting point about this particular algorithm is that a very complex concept
has been discovered in the algorithm preconditions: that of a tower with any number of
biocks. Although this in itself is uninteresting from the Doint of view of algorithm
earning, it shows how concepts with algorithmic regularity can be represented compactly
and succinctly.

3. Conclusions and Surrmary
This section discusses some limitations of the method and some current and future

research aimed at those limitations. This section concludes with a summary . As was shown
from the example in section 2, the method presented in this paper is quite powerful and

Figure 2-4: PICTORIAL REPRESENTATION OF r-unstack-putdown X

PRECONDITIONS AND ADDITIONS SET

general. however, real algorithm learning represents much more than just knowing the
semantics of algorithmic constructs. Currently the limitations of this method include:

* The need for a strong theory to describe algorithmic constructs.

" Lack of knowledge about any data struc:ures other than lists.

" Lack of knowledge about the domain ::eory that can be exploited in locating
algorithmic constructs.

• Lack of knowledge about algorithm design (at higher levels)

Where does the theory of algorithms come f'om and how does the quality of the theory
influence the types of algorithms that can be !earned? Here the theory was derived from
program verification techniques. An interestirng question for future research is whether the
theory itself could be derived by using anotheT weaker theory.

The structure of the plan in explanation-based learning appears to be unimportant. In
the context of learning of algorithms, however, the plan as a non-linear (dag) graph is a
much better structure for purposes of discovery since independent subproblems can be
located easily and the assumption of the basic argument structure of a list for algorithms
constructs such as loops can be weakened to a set. Recall that the !ist structure was built
by noting the overlapping portions or dependencies between two consecutive algorithm
applications and it forces the sequentiality of the algorithm application. If, however, two
consecutive algorithm applications have no common portions then a list structure is
unnecessary since either one can be executed independently of the other and a set data
structure is a better representation. It is in this spirit of data structure disco'ery that
explanation-based generalization with plan graphs is being investigated.

Another interesting future topic currently being investigated is to combine domain
knowledge present with operators that don't contain domain knowledge. One could imagine
a naive physics theory that slowly becomes part of the operators after solving problems
involving deducing some physical relations that aren't described by operators and using

operators.9 For example, building a tower larger than a certain height may cause towers
that topple over because of unsteadiness--yet there is nothing in the operator preconditions
to prevent that case from occurring even though a domain theory may express notions of
balance.

There is much knowledge to be gleaned from algorithm design--that describes methods to
choose subprocedures and decompose problems--that would be very useful to incorporate
into the theory of algorithms.

0

This paper presented research that extends methods used in explanation-based
generalization to discovery of algorithms by combining a theory of algorithms with
explanation-based generalization. The general schema for one particular algorithm was
shown and used to discover an algorithmic construct that represented a generalization of
the solution sequence. The discovered construct represents an enormous power increase in
problem-solving performance for the planner since it embodies a theoretically infinite
number of sequences compactly and succinctly. This transition from weak to strong
methods involves a potentially exponential speed-up factor in problem-solving performance.

4. Acknowledgments
This paper is part of the author's thesis research. A Prolog implementation of the

research presented here is currently underway. Thanks go to Tom -Mitchell. Chris Tong and
Jack Moscow for comments on earlier versions of this paper. Thanks also to Jaizhen Cai
for many thoughtful discussions regarding set theory.

gThJi topic suggestion is due to Tom Mitcbell

losee (Kant. 198S. SLeer and Kant, 1985. Kant. 1982) on auccmatc programmiag perspectives and (Mes&rovic.
1970] for information-theoretical perspectives on hierarchical systems

I. APPENDLX: Primitive Blocks-World Operators

This section list all the primiEi~e blocks world operators. The preconditions set. P.
describes what must be true in the state of the world before operator application. The
deletes set. D. and the additions set. A. describe what facts will be deleted and added to
the state of the world. Note that the primitive operators have no bodies since no other
control constructs can be present at the primitives level.

putdown(x)
P & D: {HOLDING(x)}
A: {O.NTABLE(x).CLEAR(x).H..NDE. IPTY }

pickupix)

P & D: {ONTABLE(x),CLEAR(x),HANDEIPTY}
A: {HOLDING(x)}

unstack(x.)
P & D: {HANDEMPTY.CLEAR:x,,.ON(x.v)}
A: {HOLDING, TCLEAR(y)}

stack(x.y)
P & D: {HOLDING(x),CLEARv-}
A: {HANDENIPTY CLEAR(x).ON(xv)}

References

Bauer. N. A Basis For The Aquisztzor. of Procedures From Protocols. pages 226-231.
Proceedings IJCAI-5, Cambridge. MA. 1977.

Deiong, G. Acquiring Schemata Through Understanding and Generalizing Plans. pages
462-464. Proceedings IJCAI-8. Karisruhe. West Germany, August, 1983.

Fikes. R.. Hart, P., and Nilsson, N. J. Learning and Executing Generalized Robot Plans.
Artificial Intelligence. 1972. 3,(4), 251-238. also in Readings in Artificial Intelligence.
Webber. B. L. and Nilsson, N. J., (Eds.).

Hoare. C.A.R. and Wirth. N. An Axiomatic Definition of the Programming Language
PASCAL. .4cta Informatica, 1973. 2.335-355.

Kant.E. and NewelI.A. Problem.Solnng Techniques for the Design of Algorithms.
Technical Report CMU-CS-82-145. CNIU. November 1982.

Kant. E. Understanding and Automating Algorithm Design. Proceedings IJCAI-9. Los
Angeles. CA, August. 1985.

Korf. R. Learning to Solve Problems by Searching for Macro.Operators. Marshfield. NL.:
Pitman, 1985.

Laird. J. E.. Rosenbloom, P. S., Newell. A. Toward Chunking as a General Learning
Mechanism, pages 188-192. Proceedi:gs AAAI-84, Austin. TX. August, 19S4.

.iahadevan. S. Verification-Based Lear-zing: A Generalization Strategy for Inferring
Problem-Decomposition Methods. Proceedings IJCAi-9. Los Angeles. CA. August.
1985.

Manna. Z. Mathematical Theory of Com~pu:atzon. NY: McGraw-Hill 1974, 1974.

.lesarovic.M. Theory of Hierarchical Muit:level Systems. NY: Academic Press. 1970.

.. ili. A. An Introduction to Formal Program Verification . NY: Van Nostrand. 1985.

Nin'on. S. Constraint-Bcsed Generalization: Learning Game-Playinp Plans From Single
Ezamples. pages 251-254. Proceedings A.-AI-84, Austin, TX. August. 1984.

.itchell. T.. Keller. R. and Kedar-Cabelli. S. Explanation-Based Generalization: A unifying
view. Machine Learning. January 1986. 1,(0), ?

Phillips. J. Program Inference From Traces using Multiple Knowledge Sources. pages 812.
Proceedings IJCAI-5, Cambridge. NL-. August. 1977.

Siklossy, L., Sykes, D.A..4 atomatic Program Synthesis From Ezample Problems. pages
268-273. Proceedings IJCAI-5. Cambridge, NL-k, 1977.

S,eier. D. and Kant. E. Symbolic Ezecution in Algorithm Design. Proceedings IJCAI-9.
Los Angeles, CA, August. 1985.

Ltgoff. P. E. Shift of Bias for Inductive Concept Learning. PhD thesis. Department of
Computer Science, Rutgers UniversitN. May, 1984.

Conceptual Clustering, Semantic Organization and Polymor

Stephen Jos6 Hanson

and

Malcolm Bauer

Bell Communications Research
435 South Street

Morristown NJ 07974

.4 bstract

This paper describes a machine induction program (WITT) that attempts to
model human categorization. Properties of categories to which human subjects
are sensitive includes best or prototypical members, relative contrasts between
putative categories, and polymorphy (neither necessary or sufficient features).
This approach represents an alternative to usual Artificial Intelligence
approaches to generalization and conceptual clustering which tend to focus on
necessary and sufficient feature rules, equivalence classes, and simple search and
match schemes. We demonstrate how this categorization scheme may be used
in the construction of semantic nets. Semantic variables are extracted from the
1985 World Almanac for nations of the world and used in WITT to determine
clusters of nations, relationships among nations (semantic links and category
structure) and underlying relations of semantic features within clusters that
provide the basis of the group membership.

Introduction

Much of the current work on machine learning -.nd conceptual clustering rests

on five false premises:

(1) that necessary and sufficient features, or common feature lists,
must be central to the categorization engine;

1 Parts or this paper will appear in Kanal & Lemmer, Uncertainy in Artificial Intelligence North Holland, 1986

- NZ

Conceptual Clustering

p 54

(2) that categories are equitalence classes, which are typically
treated as though there were no within category structure;

(3) that feature polymorphy (neither necessary or sufficient features)
is either uninteresting or noise;

(4) that probability measures (or information measures) and
symbolic manipulation are antagonistic;

(5) that the preceding four assumptions are consistent with human
categorization data.

In contrast, psychological results in the categorization literature are inconsistent

with each of the five assumptions above. People do not seem to try to form categories

by determining the necessary and sufficient set 2 of defining features (Michalski. 1980)

for a set of objects. Rather, people seem to form relative "contrasts" between

categories; that is, people tend to minimize variance within clusters while maximizing

variance between clusters (Rosch & Lloyd, 1978; Smith & Medin, 1981). People also

tend to have best or prototypical members of a category as opposed to equivalence

classes (Homa, 1978; Posner & Keele,1968); people tend to impose a category structure

on a set of objects.

Many categories that people use (perhaps all natural categories) have all or at

least some members that possess neither necessary nor sufficient features and can best

be described by a polymorphy rule (m features out of n, m < a; Dennis, Hampton &

Lea, 1973; Smith & Medin 1981, chapter 4, probabilistic features; see Figure 1 for an

example of polymorphous categories). Finally, recent evidence suggests that the "basic

level" categories, ones which people tend to reference with respect to other categories

(i.e. use in natural conversation, say, in terms of snmething like "please sit in the

chair" as compared to "please sit in the furniture") are those that maximize

2 The distinction drawn here is somewhat subtle and does not imply that people and animals do not have or know
about categories that possess necessary and sufficient features, to imply that people could not use common features
is contrary to intuition However, there are many possible mechanisms for achieving necessary & sufficient feature
sets for categories, ones that do not require that the clustering method focus exclusively on fiding necessary and
sufficient feature aets

Conceptual Clustering
P 55

conditional probabilities of features within a category (Rosch and Mervis, 1973). More

recently, such measures have implicated the transmission of information3 between

features and categories or inter-correlations of features (cf., Murphy & Medin, 1983;

Corter & Gluck, 1985).

The notion that will be put forward here is that categories that exist at some

focal or basic level are also those that are bundles of feature inter-correlations which

in turn tend to promote a coherence in the category (cf. Murphy & Medin, 1985). The

coherence will be assumed to be related to those feature inter-correlations which

promote contrast with another category. Thus, covariation that is both significant in

the feature space and distinctive for clusters will be those that promote coherence in

the category space which at the same time reduces the potential number of

correlations that must be examined.

Rationale

In what follows we discuss a rationale for the present conceptual clustering scheme, a

particular implementation and a few experiments demonstrating the unique properties

of the approach. We motivate the following conceptual clustering scheme in terms of

the psychological literature on categorization just indicated. This approach allows us

to make clear the specific assumptions underlying the notion of conceptual clustering

and the psychological nature of the properties of categories:

(1) Categories arise as contrasts between one another, in other
words, categorization is relative to the ezisting contezt of other
putative categories.

3 Information is used in a technical sense to refer to Shannou's (1948) selective Information (H) It will be used in
measures of the likelihood' that entities belong together Most of the measures that have been proposed actually
involve information loss as contrasted with reature-feature tranmsission or covarlation analysis of features as will
be proposed here

Conceptual Clustering

(2) Categories have a distribution of members, some more
representative, some less. Furthermore there tends to be one best or
a set of best members or an abstracted member (prototype) that may
be used to represent the entire category.

(3) Categories tend to possess members that have features that are
neither necessary nor sufficient (polymorphy). Polymorphy seems to
arise in real world contexts, that is, when there is either natural
variation in members or when the category is supported by a
rational or causal account of the underlying relations between
objects in the category.

(4) Categories can be represented *by the inter-correlation
(transmisssion) between feature sets; such inter-correlations can be
used as a measure of the coherence of the concept underlying a
category. The "similarity" of categories is in terms of the
transmission between feature sets identified within each category.

(5) Categories and categorization should be motivated by
psychological research, because categorization is a basic process that
underlies many artificial intelligence domains including expert
systems, natural language processing, semantic networks, as well as
information retrieval. Both the human comprehensibility of the
categorization and its match to human performance are crucial to
the realization of progress in each of these areas.

In summary, a concept will be defined as having four properties: (1) an identity that

can be described in terms of the inter-correlations in the feature space; (2)

prototypical or best members; (3) layers of objects that possess fewer common and

distinctive features and that introduce more polymorphy into the category: (4) a

relative tension or contrast between a given concept and any other concept in the

field.

The approach described in this paper is distinct from statistical clustering, which

stresses descriptive models. Statistical clustering has been used primarily to provide

different views of the same data or to explore data. by using arbitrary similarity

metrics and rules for group membership (cf. Everitt, 1977). WA'idely used statistical

methods for clustering typically admit a few kinds of metrics (e.g. euclidian, city

block) and a few kinds of group membership rules (e.g., centroid, single linkage, and

complete linkage), although there are clustering packages (e.g., CLUSTAN IB,

Wishart, 1969) that effectively allow hundreds of different ways to do clustering

Conceptual Clustering - 7

analysis of the same data! Furthermore, statistical clustering approaches tend to

rocus on the entire data set in their attempt to reduce the similarity measures into a

more compact representation (e.g. MDS or factor analysis).

In contrast, conceptual clustering is a process model which attempts to derive

the categories that would be most consistent with semantic or structural (relations of

objects) interpretation in which the members could have been described. Conceptual

clustering is a "weak" approach which uses very little prior information about the

nominal nature of the categories ("isa" or "kindor' or property lists); nonetheless,

nothing would preclude the addition of further knowledge about the category or the

input entities or the feature relations (weights or selection criteria). Basically, this

approach attempts to use the known psychological properties of categories and find

the most likely representation of the given entities based on input features. Finally,

note that in the development of this approach feature selection is not attempted.

Because sirnilarity can be defined in so many ways and is so controversial, 4 we

assume (1) that people can form and use probability estimates within a feature space,

resembling the kind of uncertainty that arises in everyday reasoning contexts (e.g.,

"the probability that the afternoon coffee time (which I can never remember the exact

times for) is over at the cafe." (2) that these probability estimates can be used to form

contrasts between potential categories (cf. Tversky, 1977); and (3) that the category

structure includes prototypes, polymorphy, and a tension between generalization to

other categories and the identity of a category relative to all other categories as they

are forming. Finally, the present conceptual clustering approach is agglomerative and

uses local views of the feature space as contrasted with a factor analytic approach or

any type of divisive clustering.

4 For ezample, different similarity measures can be used to recover many different structures within the same data
Furthermore, stimuli like words do not seem to be best described by models that are appropriate for more
perceptual stimuli like colors (cf Shepard, 1978).

Conceptual Clustering

WITT Structure

PThe present conceptual clustering algorithm (WITT s) attempts to automatically

cluster a set of objects which have been previously defined in a feature space. WITT's

primary goal is to discover concepts in the object set by forming hypotheses and

testing the putative concepts that result for cohesiveness. Failure of one hypothesis

leads WITT to test other hypotheses that involve the creation of new concepts or the

merging of old ones. Various hypotheses are attempted in sequence (an escalation over

hypothesis states) in order to achieve better overall cohesiveness within all categories,

and simultaneously increasing the distinctiveness between categories. At present,

acceptable levels of cohesiveness are indicated to WITT through two parameters that

index t.he relative transmission (normalized to 0,1) within and between categories.

WITT's control structure is modeled after a person attempting to sort or

categorize an arbitrary number of objects into a set of disjoint, coherent categories.

An example of the kinds of tasks that WITT would attempt to model might be an

expert in a field of research attempting to file away some recent documents relevant to

a particular sub-area of research while at the same time trying to maximize the

probability of retrieving the document again in an appropriate context. Another

example of a task WITT models is a problem solver attempting to decide whether the

problem it is presently dealing with is similar to another problem that it has already

solved in the past and subsequently deciding that it should attempt to apply the same

sort of problem solving technique (these might be domain specific solutions or so-called

weak methods; cf. Laird, Rosenblum, & Newell 1985). Still another kind of problem

5 Named for the philosopher Ludwig Wittgeastein who argued persuasively for 'family resemblance' and polymorphy
as the basis for categorisation and language His classic example of this problem is the nature of the category
game

WITT is implemented in seta-lisp on a Symbolics 3600.

Conceptual Clustering

that WITT is designed for is the addition, through analogy of new knowledge to an

existing knowledge domain. WITT can determine the proximity of two concepts (e.g.,

based on a set of substitutive or nominal variables) relative to how that specific

analogy might distinguish other existing concepts already present in the knowledge

domain.

WITT has three major components: a linear goal stack, a hypothesis generator

and a transmission (see below) metric to detect significant inter-relationships among

features. WITT enters goal states in an attempt to find objects to add to existing

categories (object-hunting), find new dense regions in the feature space (proto-seeds),

or to merge together existing categories or proto-seeds.

There are only three goal states: object hunting, protoseed hunting, and

protoseed merging, each with its specific procedures, although each goal state employs

the same information metric in some specific way. WITT cycles within each state

until it hits an impasse, that is, until it finds that it cannot precede with the present

goal. Then the next state on the goal stack is invoked and hypotheses appropriate to

the new goal state are considered.

Given a set of objects defined on a (binary or multi-valued) feature space, WITT

first attempts to form local estimates of dense regions by looking for very similar

objects based on an information-loss metric (cf. Orloci, 1969; Lance & Williams, 1967;

Wallace & Boulton, 1968). This defines a preclustering process that gathers identical

or relatively identical objects together until a threshold is reached relative to the

initial pair of objects joined. Each of these regions is then assigned to a "protoseed".

The protoseed measure is a standard information-loss type measure in which the

information content of the objects in terms of features when they are separate is

compared with the content when they are joined. If information loss is relatively small

they are subsequently assigned to a new protoseed. This measure is used first for the

sake of efficiericy and speed. The information-loss measure also avoids calculations of

Conceptual Clustering

inter-correlations o a small number of objects which are likely to spurious. However,

the main metric that is used for other comparisons is a transmission measure among

the features with a set, between sets of objects (say, o, and o,) and between objects

and protoseeds. Such measures are usually defined in terms of independence within

the feature space as a function of an information content measure (H):

t(o1;o,) = H(o) + H(o,) - B(o,,o,) (1)

and are used in WITT to establish transmission between various entities. This

measure can be shown to be similar to several recent proposals of metrics for basic

level categories (Hanson, in progress; Jones, 1983; Murphy, 1982; Corter & Gluck,

1985).

At each cycle WITT begins to test whether it is possible to add members to each

protoseed without affecting the "identity" of each putative concept. The identity of

each protoseed is determined by coherence of feature values that support and at the

same time distinguish it from all other existing concepts. A ratio of the transmission to

the object to a potential category (C,) relative to all others is formed at each pass to

test this tradeoff between the cohesion and distinctiveness of the category:

t(o. C)
C > T, for all i =J (2)t(o. CJ)

This ratio measures the coherence among features in each category relative to the

coherence among features to other categories presently available. If this object

hunting fails, WITT tries a new hypothesis and revives the "protoseed hunting" goal

state in which new dense regions are located and assigned to new protoseeds. If the

identities of all present protoseeds are maintained or improved, then the protoseed is

instantiated and the object hunting goal state is re-entered.

If, on the other hand, the new protoseed fails, WITT enters a new state and

A?

Conceptual Clustering

hypothesizes that protoseeds are too close together to yield improvement. At this

point, the protoseed merging state is invoked and identities of the protoseeds are again

checked. If successful, WITT returns to object hunting; otherwise, WITT gives up

since further search violates input values of the requested relative tension between

categories. WITT then announces that the protoseeds are well formed and indicates

whether some objects are left unclustered. WITT then describes each concept in turn

and the overall structure of the cluster solution.

At the end of the process several properties of the category are likely to be

achieved: (1) at least one best member is identified for each category; (2) the cohesion

of the category and its relative distinctiveness are reported; (3) a relative contrast

between all categories is chosen to maximize identity within a category and minimize

overgeneralization between categories; (4) feature relations are indicated by the

correlation structure within each category; (5) and labels for the hierarchical relations

of the objects are indicated at each branch of the tree including common features,

distinctive features, and necessary and sufficient features (if any).

Some Results: WITT Studies

Detection of Polymorphy.

In order to demonstrate some of the properties we have been discussing, we first

examine a particularly difficult artificial set of stimuli that have been used in a

categorization experiment with human subjects (Dennis, Hampton Lea, 1973). An

example of the artificial stimuli are shown in Figure 1 and represent a perfect example

of 2 out of 3 polymorphy. In frame A of Figure 1 are 4 exemplars that can be

described by the rule 2 out of 3 of the set of circle, white, and symmetric around an 90

degree origin (the number of elements in an exemplar is incidental). In contrast the 4

exemplars in frame B of this figure can be described by the rule 2 out of 3 of the set of

square, black, and assymmetric around an 90 degree origin. As stated earlier a

Conceptual Clustering

property of polymorphous categories is that the feature set that defines the inclusion

rule is based on neither necessary, sufficient nor necessary and sufficient feature sets.

Thus, there is no feature common to all members of the category nor is there one that

is not in one category without being present in the other.

Subjects will provide similarity ratings between pairs of exemplars which seem to

indicate they are sensitive to the overlapping feature sets. Subjects can also

successfully categorize these exemplars into the two indicated sets in Figure 1,

although they will generally not be able to state the rule they are using to do the

sorting.

WITT was given these same stimuli in a binary matrix (including the incidental

feature, number of components) and different clustering parameters were used in seven

separate runs. Five of these seven runs resulted in unique clusterings that cover most

of the significant range of the clustering parameters, which are shown in Table I.

Shown in each column are the parameter values for the cohesion (Tc), distinctiveness

(Td) the ratio of distinctiveness and cohesion (Tc/Td), the resultant distinctiveness

('Dis") and cohesiveness ("Coh") of the clusters, and, in the last column, the number of

clusters for the solution. If one looks for both the largest cohesiveness and

concurrently the smallest distinctiveness of the solution it is clear that the

intermediate ratio of cohesiveness and distinctiveness (9; starred cluster value)

produces the best outcome.

Tc Td Tc/Td Dis Coh #clusters
.5 .2 2.5 .1,.1,.03 .16,.16,.5 3
.8 .2 4 .1,.1,.03 .17,.17,.35 3
.9 .1 9 .0001 .23,.23 24
.7 .05 40 .0001 .16'.10 2
.8 .005 140 none .10 1

Table 1: Polymorphy runs

Conceptual Clustering

This particular solution has an extremely good distinctiveness in terms o transmission

between categories (almost 0) and the largest cohesion distributed equally across the

two clusters. In many wdys this is an ideal cluster solution. Further note that the

feature to feature inter-correlations for all eight stimuli considered together is zero.

That is, the solution to this problem must involve agglomerative or local views of the

data in order to find the optimal inter-correlation set. Other standard multivariate

techniques would have a difficult time with such a inter-correlation matrix.

Finally in Figure 2 is the complete dendrogram of the 8 stimuli showing the

cluster history as a function of transmission between features. Notice that the two

centers first isolated provide the strongest possible contrast in the space, although

there are other possible choices. Thereafter members are added which reduce the

overall cohesion but not beneath a tolerable threshold (we actually allowed WITT to

chose a relatively high value of cohesion if it could). WITT stopped because it ran out

of objects to cluster. None of the exemplars were considered by WITT to be more

prototypical of the discovered categories than any other.

Semantic Nets

The following demonstration is intended to show how semantic net construction might

be accomplished by using machine readable resources and conceptual clustering. In

this type of approach semantic relations are inferred from the the featural relations

discovered during cluster formation. Following from the psychological evidence

discussed earlier, we argue that semantic categories are those that are supported by a

set of feature inter-correlations within each cluster. The comprehensibility and

underlying rationale of each category depends on the constellation of feature values

which supports one category and distinguishes it from another.

Conceptual Clustering

In this approach we also assume that semantic primitives, semantic links in a

type hierarchy (e.g., isa and kindof links) and slot-filler structures such as scripts or

frames have analogues in conceptual clustering. In conceptual clustering semantic

primitives are to be found in the category structure, they are most likely to be

represented by objects or meta-le'vels which provide the greatest support for the other

members of a category. Links can be represented by those common, distinctive and

polymorphous features that induce category membership. Scripts and other slot-filler

structures are represented in conceptual clustering by the feature inter-relations, such

covariation is analogous to "expectations" that causes a conceptual structure to be

used to predict, using attribute "criteria", that an object is of a certain type rather

than another.

There are various approaches to conceptual modeling that have appeared in A.

Schank and his collegues have argued for a conceptual dependency approach. This

involves using some primitive concepts in a domain and re-representing more complex

concepts with these primitives. So "liar", for example, might be represented as

someone who transfers false knowledge from one person (themselves) to another (M-

TRANS). In this approach each concept might possess expectations about information

it is recieving, so for example, in the cannonical approach, if the "earthquake concept"

has been activated then certain expectations about the size, the location, the extent of

the destruction and the liklihood of further tremors may also be activated. In such a

way scripts or frames can take advantage of possible (pre-enumerated) attribute

correlations by "expecting" other features once a correlate has been observed.

The main disadvantage to semantic network constri'ction is that these approahes

tend to be ad-hoc. Many of the so-called fundamental problems in machine learning,

for example the "bottleneck" problem and the "brittleness" problem arise from the

non-principled construction of knowlege bases which makes the addition of new

knowledge complicated and the generalization to new domains intractable.

J

Con:eptual Clustering

In order to illustrate the present approach and constrast with other approaches

we consider a specific example of the use of an archival distribution of semantic

features for the nations of the World. We stress that we are not looking for one

particular organization but rather any organziation of object types that is

comprehensible and provides specific sensible hypothesis about the group membership

based on feature sets. Thus, it should be noted that random organizations of nations

are generally not sensible and that higher order descriptions such as "super-powers",

"third world" and "poor but technologically advanced" are unlikely to arise by chance

organizations alone.

The following example uses a machine readable version of the 1985 World

Almanac in which three tuples of the form:

<country attribute value>

were extracted' from the running text in each section descibing a particular country.

An excerpt of this text is shown for a particular country (FRANCE) in Figure 3. In

each description there turned out to be 17 usable features for each country, these are

shown in table 2, with their descriptions; they consisted of attributes like "defense

budget", "religions" and "infant mortality". Thirty Seven countries were arbitrarily

cho-en with the constraint that they cover a a large range of continents and provide a

large range of variation in featural values.

6. R.A. Amsler Is responsible for the automatic extraction of the S-expresions from the machine readable
umt. This was accomplished by parsing both the pboto-typsecting symbols and the resultant noun-
phrases.

Conceptual Clustering

AREA area of the country (bl,mid jo)
LOCATION location of the natloo In the world (N-africalndochloa...)

INDUSTRIES primary Industries In the country (Iron, cars, electronics..)

DEFENSE amount spent of GNP oan defense (bi,mid,lo)

CURRENCY name of the currency of the country (dollar, rlel, kyat...)

LITERACY number In population literate (bi,mid,low)

CHIEF-CROPS primary crops farmed by population (grains, wine, potatoes...)

MINERALS primary minerals In the country (oil, iron, coal...)

IMPORTS countries to whIch this coutry Imports from (usa, france ...)

EXPORTS countries to which this country exports to (usa, w-germany...)

TYPE the type of government In place In the country In 185 (republic, communist...)

LANGUAGE the primary languages spoken by population (eoglish, french...)

RELIGIONS the primary religions practiced by the popuatlion (hindu, christian...)

TELEVISION-SETS the number of tvs In the country (hi,mid,low)

NATIONAL-BUDGET the size of the national budget as reported in 1985 (himid,low)

PER-CAPIT,.-iNCOME the average Income for a member of the population (bi,mid,low)

INFANT-MORTALITY the rate of Infant death from birth, disease etc.. (hi,mid.low)

Table 2: Features for Nations of the World

Although more nations could have been included, we felt it was not necessary since we

were interested in constructing meta-level categories, which should not be necessarily

based on complete coverage (i.e., you may know the concept "third world" countries

but not be able to name them all). And in any case, the world almanac does not

really provide comprehensive coverage over the entire world.

Such three tuples were further cleaned up and quantitative variables such as

"per-cent literacy of population" were transformed to ordinal values. This was done

automatically by examining the frequency histogram of the variable and looking for

clusters in the data that would suggest a break for miltivalued variable like "hi",

"mid" or "low". Approximately half the variables were quantitative and transformed

accordingly. Nonetheless, WITT, only uses the nominal or semantic value of the

variable without note of possible order information, although, the value is reported

along with feature correlations.

WITT was given the 37 nations of the world with their corresponding attribute

values. Several runs were attempted, the most stable run, that is, one that did not

either find 7 one group or a large number of two country groups is shown in Figure 4.

Conceptual Clustering
P

This Figure shows the complete dendrogram for the 37 Nations of the world.

Examination of the dendrogram reveals that WITT did discover reasonable and

comprehensible groupings in the data. For example, at the top of the dendrogram

note the first cluster of 3 countries including USA, CAN.ADA, and JAPAN, this set

seems t6 be broken off from a european cluster including ITALY, SPAIN, UNITED

KINGDOM, and FRANCE, which in turn are distinct from a larger cluster starting

near the bottom of the dendrogram with CAMBODIA, VIETNAM and TLkILAND.

Toward the center of the dendrogram we have some interesting clusters such as

IRELAND and ISRAEL and a separate cluster involving CHINA and USSR. Roughly

the structure of the dendrogram can be broken into 7 or 8 groups. At the highest level

we see a split between countries that may be described as "third world" and countries

that are technologicaly advanced and have a relatively high quality of life. Finer

distinctions can be made as we move down the dendrogram and notice a cluster

having to do with european countries and another cluster down the tree in south-east

asia or africa. However, geography seems to have less to do with the finer groupings

than does some abstract qualities having to do with economy, quality of life and

industries. We turn next to a specific look at some selected groupings.

In Figure 5 we show four cluster groups at the lowest level of the tree. These

include the USA cluster, the european cluster the south-east asia cluster and the

middle cluster including IRELAND, ISRAEL, BELGILU, and DENMALkRK. In each box

we include attribute correlations that were amoung the top 5-10 in characterizing the

cluster. For example, in the USA group we see that "high quality of life" seems to

predominate. This seems indicated by the large number of television sets and the

7. We should note there were other runs, all however, bore a similarity to the groupings in Figure 4. La
fact, from experience we have found there are typically only a few number of clusters that WITT can
End and they are generally In a small neighborhood of possible groupings. This partly must reflect
W TT's conaer~ative control structure and partly must reflect the given distribution of attribute values
In a given data set.

P 6 3
Conceptual Clustering

large national budgets each or these countries have. Also location in the world and

industries seem to be a good predictor of this group, although, one that might be

expected to change when other locations outside of north-america were found to

contain similar values. Finally, a third predictor set was the predominate literacy of

thie population and the type of government which was democratic. Each of these sets

were above .6 in correlation and indicate what is considered "important" to these

clusters. In the next group which includes CAMBODIA, we see that "low quality of

life" seems to hold the forefront, however economy seems also to be an important

attribute of the cluster. For example, the pair low national budget and low per-capita

.income seem to be included in a number of correlations with other variables like

literacy, defence and and number of televisions, a seeming mix of economic,

governmental, educational and technology variables. A third set of variable

correlations seem significant that involve infant mortality with location, exports and

language. Such covariates would seem to implicate not only quality of life issues but

hospital care, local health conditions and education.

In between these two extremes in technology and quality of life we see two other

clusters shown in the bottom of figure 5 that represent intermediate values of variables

that played an important role in the first two clusters. For example, the ITALY,

SPAIN cluster is characterised by mid level of per-capita income and low infant

mortality, in fact the In-infant mortality feature picks up medium number of tvs and

government type as well as hi literacy. Overall, we might characterize the quality of

life as mid to high with main emphasis on variables like education, personal economics

health care and government, contrasting with variables like national budget, defense

or high technology. Finally, another intermediate case is the IRELAND, ISRkEL

cluster which seems focused on attribute correlations such as hi per-capita income and

low infant mortality, low number of televisions with hi to mid per-capita income. So

unlike the ITALY, SPAIN cluster here we have a contrast between a relatively high

Conceptual Clustering

quality of life but a low number of televisions and relatively poor governments "hich

may be indicative of the local and global resources being diverted to activities other

than recreation or entertainment. It may also be related to countries that are

relatively isolated from the more global communities for any number of reasons

including conflicts- within and outside the country as well as just an intended

isolationism attitude by the country itself.

Further experiments testing the comprehensiblity of these categories to people

should help confirm and validate the approach. Specifically, we would expect that both

the clusters of countries and the feature relations within countries to be more

comprehensible to people than random organizations of nations and random correlates

of features shown to subjects. Sortings of these countries should also produce similar

clusterings amoung subjects asked to sort for similarity. We think that this

demonstration provides both reasonable clusters of nations, ones that most people

would think of as well as those that might be more subtle at first glance but in close

examination provide plausible accounts of nation's relationships. Without such

conceptual clustering it is easy to miss important and useful links within the semantic

structure, and more critically it makes it easy to add new nodes with the automatic

adjustment of the network to accomodate this new information.

Acknowledgment

We are grateful to R. B. Allen, G. W. Furnas, G. A. Miller and D. Walker for
reading and commenting on an earlier version this paper.

Conceptual Clustering

REFERENCES

1. Butler, K. A. and Corter J. E. Use of psychometric tools for knowledge
acquisition : A case study. paper presented at Workshop on artificial Intelligence
in statistics, (1985).

2. Clancy, W. J. Classification Problem Solving paper presented at AAAI, (1984)
pp. 49-55.

3. Corter J. M. and Gluck M. A. Machine generalization and human
categbrization: an information-theoretic view, Workshop on Uncertainty and
Probability in Artificial Intelligence, UCLA, August, 1985.

4. Dennis I., Hampton J. A., Lea S. E. G., New Problem in concept formation
Nature 243 (1973) pp. 101-102.

5. Everitt, B., Cluster Analysis (Heinemann Educational Books, London, 1977).

6. Homa, D., Abstraction of ill-defined form, Journal of Ezperimental Psychology:
Human Learning and Memory 4 (1978) 407-416.

7. Jones G. V., Identifying basic categories, Psycholog:cal Bulletin, g4 (1983) 423-
428.

8. Laird, J. E., Rosenbloom, P. S. and Newell, A. Towards chunking as a general
learning mechanism Technical Report cmu-cs-85-110, Department of Computer
Science, CMU, January, 1985.

9. Lance, G. N., Williams, W. T. Note on a new information-statistic classificatory
program Computer Journal (1967) 195.

10. Michalski, R. S., Knowledge acquisition through conceptual clustering: A
theoretical framework and an algorithm for partitioning data into conjunctive
concepts, International Journal of Policy Analysis and Information Systems 4
(1980) 219-244.

11. Michalski, R. S. and Stepp, R. E., Learning from observation: conceptual
clustering, in: R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (Eds.), Machine
Learning: An Artificial Intelligence Approach (Tioga, Palo Alto, 1983) 331-363.

12. Murphy, G. L., Cue validity and levels of categorization, Psychological Bulletin,
g1 (1982) 174-177.

13. Murphy, G. L. and Medin, D. L. The role of theories in conceptual coherence,
Psychological Review, 92 (1985) 289-316.

14. Orloci, L., Information analysis of structure in biological collections, Nature 223
(1969) 483-484.

15. Posner, M. I. and Keele, S. W., On the genesis of abstract ideas, Journal of
Experimental Psychology 77 (1968) 353-363.

16. Reed, S. K., Pattern recognition and categorization, Cognitive Psychology 3
(1972) 382-407.

17. Rosch, E. and Lloyd, B. B. (Eds.), Cognition and Categorization (Erlbaum,
Hillsdale, NJ, 1978).

18. Sejnowski, T. J., Kienker, P. K. and Hinton, G. E. Learning Symmetry groups
with hidden units: Beyond the perceptron, Submitted to Physica D (1986).

19. Shannon, C. E., A mathematical theory of communication, Bell System Technical
Journal 27 (1948) 379-423, 623-656.

Conceptual Clustering

P 72

20. Shepard R. N., Multidimensional Scaling, Tree-Fitting and Clustering. Science
210 (1980) 390-398.

21. Smith, E. E. and Medin, D. L., Categories and Concepts (Harvard Univ. Press,
Cambridge, MA, 1981).

22. Wallace, C. S. and Boulton D. M., An information measure for classification.
Computer Journal. 11 (1968) 185-194.

23. Wishart, D., Numerical classification method for deriving natural classes, Nature
221 (1969) 97-98.

24. Tversky, A. Features of Similarity Psychological Review 84 (1977) 327-352.

F,

P 72
Conceptual Clustering

Figure Legends

Figure 1: Two out of three polymorphy example adapted from Dennis, Hampton and

Lea, 1973.

Figure 2: Complete dendrogram for.the polymorphy example.

Figure 3: Excerpt from 1985 World Almanac for the nation: FRANCE

Figure 4: Dendrogram for Nations of World

Figure 5: A more Detailed view of a few meta-level concepts in the Clustering

-A

P 72

TWO OUT OF THREE POLYMORPHY

00 0D 41 00
0 0

o. 000 00 s.
U 0 0 U

A B

A: AT LEAST 2 OUT OF THE I FEATURES - SQUARE. WHITE, OR SYMMETRIC

I: AT LEAST 2 OUT OF THE 3 FEATURES - CIRCLE, BLACK, OR ASYMMETRIC

0 i"
ca.

L2

z

0

500

0o.

U d

P 75

"Aas- Pad. At NCO

m ~ ~ ~ -swy10W 1011-MMOOM m0~ ~a' .' a I (16" M(L W, W% YNI @W'60F If

5.u ~ ~ ~ lol "M10 aF w wWk 4F At a C117pearof5.w b' . @
41ndl Wd3 lr 5 0V5 IN si 1110 0.' a -M OP -W CRW IEC. N4ATO

vva4 3 mo 17 oww ft .o ~ # vom" . bowyla ___A r 0 li.U 1C~ r~ a

O @C W 0 U'S PW as WWW 8 V .30 49 LAA a' r - , o wo - Arm3W he deer 3m w C w oo
am O S34Isso Pkaw POS34 pl5y OA5w Fee 341 we.-- xwvI1

low am is 0 a 43 534Mmn Now WS .I ' MO 0 0140 OFAP "M M'W A%,

fto WW -o Ww "08"W so to3 p,.0 UNIO r'793o &nof Moo - 53w4-S) ay ~wf 16

gom Mw,0 r~m *13 t C.wmt seawy AIM M (1646-6. fta a 03(142761

MINA 0t 571 OR &At.P fg n a 0 W"a of "t T" P'a " (36 '"CtPW340 p i'

NWWW .3n. 156-4 111L 0 we me ofa staft"

Fran"9 ?, 00un pwlwvf P.04 am Uaow- a I .3

bul Reaw 0" ww aI b~fi low o 4a'

AM bys 85. A&M I AM. QWL ChWi d a*A amw
peole "Wow (ow ~k1wim A aw '"o0o5t ow-vwa q~wtvv-s i@ .19*1

(% 04 LO 1 la0 n.. II~A p 2. r M pw Do Ga~ SW n beow. 'me. "av a ulo W-

(014 * 10.09Ma. S. Ik ~Pw A Put" 451 WSI aw aboo -wr"o 5gAls. 35.34. up*

awo WOO 1011t ANO5. Germr For~ wW sow a- aw .Sffmwt g- wc w
900A4 1OM ftftMM %ft. AD 01 5. &&wm, Gave CA'Wvel.~ Woo paw5.

TONL-110MP PU.Owwr fft0a p- "o WWWW0 7.M3 a' l5 w 00 16. lowto wo.

Swiy w'- -. L imwo.*w bollo' Of Pt Toporaph A AN-i bv IS26S1L IR F.w Fam Go"mw

NO hi W 0t-. 11.771 U ft~. MowA I ilf ON' u' am I333 M. 134 = Ff33 3. a a V to15
6"M Tt or foo;bwLo ~*ef in iot 1091o R7 ownwwd 03*7rO l#mo~o a*= owim4M

soft Cove (is"1 ant Pot LM1.s 34raf 91IRe 0 187
I.Mo eAtOIII 7a Sn'ML Mo SM~ 3W la kft IM4 fa" OWN 1% orm ow 6wro

As.7w. 1 ,I SSINI 223j" MON&C bald - m- 0-w sw u~ v'I uww*3

hWaTt OL R,111 in mo hf 21. 11111 no of giWMM ML1 ONO U to. AmYu" Am 8a'
NPM 93W " WA L*..I "1. 1 4 at s* IN3 hi ~ mow -M 64 as d" lomgO to w

-so A* 17. S O l WM 0 *oo"WN Ob owe owlra u,I M3 . No a owwwf -ew
louo 1,3 at hca (lam) ~91 aP aOWW f§.f Do Qufi -o mom

Sim.~m .. ovr-o, OAW slds are SAW In 1n$373
pvto3.mU NWW if "Maw9 us~9wt CN w " 1931Isl~~ ftooo p4w fol'w3.f 6 1
&ol okfLfftpum ue b~ ,~ Ind lo AM ad . IN a A""w daf -w Vawv a

&MF ova IN. ho W af glom be% mW ammt we CL 4M9Sw . 93 34030vo 1orlw

AtosW (34) ~ Is be0 23 m% win, F%0w ameto roa M w to45..v d

Pt InG mft wow% wove opm ijA wat Smpl Oc Are6 IM3 On Ou n. W Param d ft 91139
Uso '11112 440PO mut s wae ___L - IM poaber Wsm to 9.4' gi ~ aF a &a 3134

V77 I W% Mik AN 001 Pet 110 (13414 amn ""' WO
LOW - % t.- 46% 3. a ap 46% MINIM 1133 CWUS so l Ialue1 in ve, 00wu o oW N

ft-5 0--rou prov Love tonsa .4 gi U 050wr@ a vV"rom 0f IFy W- W GO- I 1.w

& -m10 =20 3W low oft&%mo, - 3.3 1%MLsm (1715.?4 M.X TWOCo

(IM3) 7.1 79. bov" (11114 6103 SiW. 10w w (lo 0 AwW kvVVA 0f I
17%. L W5%. SM %. VAL ffpel (lsia) MiS Ml..
o3w3s o a0 14%. k im3 aw a. UK3 ?% ?ow" 0"osai D"auas
(flow mama a Nsoe. bo am M IT3 I"3. on 11o amW a ft be Gro Gosv PM.

08$w 5113 INK eipud~av losv.lo6o owa ni3 Skol5anf W .3 bu nft9 a oft31 a %Lz

lo OW41It I@W W-1 UKt eta 81 * 0 f OL5. PW.3 POW G..? 73U &fta Mom3 vuuw0O
ore po"M W" P134) 7.1% on omgay Is g PMM~ ponrWI ow a awv3434 by

To-We t*&v It093 (nv MI Of m3w4m a Peo .&a hm 0 10fu GONai ie f
o'1.1w no 4M slow~ vt % hiM (lam U MA ft SAW a p1's

M 3m1. M1 U a11% .034 - urnSw (low3 2 Mt 795 dwno PW ow. Cor MOIL wa Prt:&A
amvM do-a arro4w aa *egowps&NwI am 5. (U 43 916

ORM. L0493'. MININ ftOA. ftmr aswOMI a5 to m fpowa w14r ISM In vuwpv.
1omaagW 7G' am to Gt h ow (Ian~ &Pw. oil "W343

ftkms 30m 1i Am 134). ?awprs m(s. is 505%lMM hi go Wow "' Moal Groom 40

Oft~ DM* 34.om b (lam3 Xv 3 owINo I WP 'iNAS SoTiaid Gro~wldTwn. wwomo ow
14oltUe 409319(I1379 702 Rutp, &f s 6W O.5 Movi a541w &W t ova V gao

=ISM* O IAM PO '34 IZA Dof sow IA 6i Era 3 18,00 ac0oet So. svueiy. evMofoo do4 It
NO"13 7.1. 343am AS~ "MV 1k, 51dW M5. IfWWW p~3 so 11 Wonft A PVp01 New

p ~ u-I

L~~G vT A.I.

rw't %Ar*A%

'III~ EkR

fZ PqLt t.I

LI- LAP &'

P 77

Selected Group Memberships

Group I 1 Group 2
USA Cambodia

Canada Vietnam
Japan Thailand

TV (hi) x National Budget (hi) National Budget (lo) x Per Capita Income (lo)
Location (north-america) x Industries (cars steel) TV(lo) x Per Capita Income (lo)

Literacy (hi) x type (democracy) TV(lo) x national budget(lo)
Literacy (lo) x TV (lo)

Defence(lo) x National Budget(lo)
Exports x infant mortality(hi)

Language x infant mortality(hi)

Group 3 Croup 4

Italy Ireland
Spain Israel
France Belgium

United Kingdom Denxark

Per-Capita Income (mid) x Infant Mortality (1o) Per-Capita Income (mid-hi) x Infant Mortality(lo)
TVs (mid) x Infant Mortality (lo) National-Budget x Infant Mortality (1)

Type x Infant Mortality (lo) TVs(lo) x Per-Capita Income (Hi-mid)
Literacy(hi) x Infant Mortality (lo) Literacy (hi-mid) x Type

P 73P

THE USE OF DOMAIN PROPER TIES EXPRESSED AS THEOREMS IV MACHINE LEAR NING

Cridstc1 Wtain
Laboratoire de Recherche en Informatique - CA 410 du CYTRS

Universit6 dle Paris Sud
91405 ORSAY CEDDC

(1)169-41-62-85

Topic. Learning

Keywords: generalization, axiom, structural matching

Abstract.
In this paper. we propose a generalization algorithm based on Structural Matching AT
each step, we choose a constant in each example, we replace all its occurences with a
generalization variabf e and we try to erase the discriminating oc curences.
It is the third operation which interests us: how to make discriminating occurences
disappear 'We define precisely what a discriminating occurence is, we show how all kinds
of axioms must be used and we define classes of predicates zo decrease the search.

A-

P 7d

1. Introduction

1. I. 1imlarity ased Learning

In the field of Learning, there now" exist two kinds of learning: Explanation Based
Learning (Dejong 86, Mitchell 86) and Similarity Based Learning (Michalski 84).

The- method, in Explanation Based Learning. can be divided into two steps:
- first of, we try to solve a problem like, for instance in the LEX system
developed by T. Mitchell and Als. (Mitchell 83), the integration of a function,
- we then try to explain each step of the resolution in order to generalize this
type of resolution, or the cases to which it can be applied.

In Similarty Based Learning, we have examples of objects, such as cancerous
cells or diseases symptoms (Michalski 84) and we generalize them according to
the si.milarities in their descriptions.

In this paper, we are concerned with this second kind of learning: we have exam-

ples El ... , E, and we want to learn a generalization of these examples.

1.2. Structural Matching

The method used to detect similarities between examples, in this paper, has
been called Structural Matching The basic idea is to transform the representa-
tion of the examples. using axioms, properties until there is no need to use
the dropping condition rule to generalize them.

For instan.ce, consider the two following examples:

El E2 _

They can be represented by the formulae:
RE, = (square A)
RE2 = (rectange B)
RE, and REZ are not similar because in RE, there is the predicate "square" and
in RE 2 , there is the predicate "rectangle".
Suppose now that we know the rule:
V x [(squcare x) =* (rectangle x)]
which expresses that a square is a kind of 'rectangle, we can transform RE, into
RE' .
RE 1 = (rectangie A)
RE, and RE 2 are now similar: if we consider the fo-mtda F = (rectangle x) and
the substitutions a,, defined by al(x) = A and a2 , defined by a2(x) = B, a,(F) =
RE, and a 2 (F) = R2. We say that RE and RET Match struxturally. We now
know that the objects in El and in E2 are rectangles and that a generalization G
of these two examples is:

G= (rectangle x)

Deflnitio 0

Let El, E 2 ..., E be n examples.
We say that El, E2 ...,F, match structuraly if there exist a formula F and n
substitutions a, such that for e-ach i, a,(F) = E.

In our previous example, RE 1 dnd RE2 did not match structurally. However,
RE, and RE 2 match structurally.

Whin examples match strucraally, it is then easy to find a generalization of
them: the formula F is already a kind of generalization. We can find a better gen-
eralization by analysing the substitutions aj.
For instance, if we consider the two follovaing examples:
E = (book A)& (redA)&(onATABLE)& (penB)& (on.B TABLE)
E2 = (book C) & (red C) & (on C TABLE) & (pen D) & (on D C)
These two examples match structurally, for if we consider the formula G
defined by:
G = (book x) & (red x)& (on x u) & (pen y) & (on y v)
and the substitutions a, defined by al(x) A. a1 (y) = B, a1(u) = TABLE, al(v) =
TABLE and a2 defined by a2(x)= C 0 2y) D, a2(u) = TABLE, a2 (v) = C, we have
al(G) = El and a2 (G) = E2
We notice that in a, and in cz, the variable u is instantiated by the same con-
stant TABLE A better generalization G' o. E and E 2 is therefore:
G"= G& (= u TABLE).
We can further refine our generalization by comparing the instantiations of the
variables in each substit"tion. In a1 and in a2 , the variables x and y are instan-
tiated by rwo different constants, A and B in a, and Cand D in 9 2 . We can gen-
eralize this by adding to G' the fact that x andy are different. It is also true for
xand u, y and u and y and v It is not true for x and v, because, in a 2 ,x and v
are instantiated by the same constant C, and it is not true for u and v
A still better generalization of G is:

G'G& (= u TABLE) & (s zy) & (s x u) & (d y v) & (* y u).

To find this better generalization, we compared the instantiations of the vari-
ables in each substitution with the relation -=". We could do the same with other
relations. For instance, if the iastantiations of the variables x and y in the exam-
ples were integers, we could compare them with the relation "<" or we could
compute the values ofx/y in each example to see if it were constant or not

There is no end to the process of generalization refinement [Michalski 1984], but
this paper is rather devoted to the study of the task to put the examples in
Structural Matching. To do this, two kinds of axioms may be used:
- logic axaoms like for instance, the idempotency of the conjunction: A 4= A &
A.
- properties of the universe in which we are working. For instance, if we want to
generalize pictures of 4eometric objects, we may use the property that a square
is a kind of rectangle.

2. AGAPE

A generalization algorithm AGAPE has been implemented in our group. by T. Bol-
linger (Bollinger 86). It is based on the principle of Structural Matching. To put
the examples in Structural Matching, idempotency is used, as well as some
specific properties of the universe (those which express relations of generality
between objects). Ia this paper, we show how all kinds of axioms must be used

?3:

to put the examples into Structural Matching and w.: define classes of predicates
to improve the algorithm of Structural Matching

2- . Representation of the exmples

We work in first order logic. Depending upon what we want to learn, we can
represent examples as conjunctions of atoms or as rules.
Fbr instance, the following example:

may be represented by the conjunction of atoms:
(square A) & (small A) & (rectangle B) & (large B)
Others means of representation may be used, we just have to specify how the
Structural Matching must be carried out.
For instance, we can represent a .. c .as:

[CNTXTJ LU -> RM
where C.VTXT represents the context in which the rule can be applied. It was
used to generalize ere 's examples concerning the different ways of moving
cubes (Vere 80). CNTXT described the position of the fixed cubes, L1 the position
of the mobile cubes before they were moved and RU, their position afteruards.
With this kind of representation and for this kind of examples, we had to put the
ccrtexts into Structural Matching on the one hand, and the left handsides, and
then the right handsides on the other hand In other examples, contexts only can
be generalized, while we cannot eneralize the "actions".

There are two restrictions to the use of the first order logic:
- we do not allow the presence of terms, but only of constants in the representa-
tnon of the examples Sometimes, because of this restriction, some characteris-
tcs of the ob)ects in the examples cannot be described.
For instance, suppose that ue want to represent zhe following example:

we can express that A is included in C by the atom (incladed A C). uwe can also
express that B is included in C but we cannot express that A u B is also
included in C, because A u B is not a constant.
We should allow functions in the representation of the examples and our last
e-,ample couLd be represented by:
(included A C) & (included B C) & (included (union A B) C)
- nor do we allow negations.

In this paper, and only to simplify our presentation, we shall moreover suppose
that there ace no predcates of arity 0. We can easily extend our algorithm to
this case.

In the next section, we give an example of the generalization algorithm and then
we describe the main steps of this algorithn.

2.2. Example

Suppose that we have the two following examples:

A F- R =C:C

Ei E2

which can be described by:
E, = (square A) & (blue A) & (ellipsoid B)
E2 (rectangle C) & (blue C) & (circle D)

In each example, there are two constants. Suppose that we choose the constants
A and C because the objects represented by these constants are blue, and
because we know that a square is a kind of rectangle. We replace all the
occurences of the constant A in El, and all the occurences of the constant C in
E2 by the pseudo-variable x. This is not a true variable, since its value is kept in
the form Ua in brackets. This gives the substitution that should be applied to
find the original example again. But, it will perhaps become a generalization
vanable during the second step of the process. Therefore, we shall call it in the
folowmg, a VCE, (from the French "Variable de Gdndralisation Eventuelle"),
which means a Tentative Generalization Variable.

E = (square x) & (blue x) & (ellipsoid B) [(= x A)]
E2 = (rectangle x) & (blue x) & (circle D) [(= x C)]

In this paper, we are not interested in the information kept in the brackets, it
has already been treated by J.G. Ganascia (Ganascia 85). So, we only take into
account the occurences of x, which appear in the conjunction of atoms.

In El, we consider the two occurences of the variable x defined: as argument of
the predicate "square", and as argument of the predicate "blue".
In E2, we consider the two occurences of the variable x defined: as argument of
the predicate "rectangle" and as argument of the predicate "blue".
In El, the occurence of x in the atom (square x) discrimrinates E, in E2, because
we do not find it in E2. In the foUowing, we shall name such an occurence a
discriminating occurence In E2, the occurence of x in the atom (rectangle x) is
also discriminating. If we know no axioms, we must stop because we cannot
make these liscriminating occurences disappear and therefore we cannot put
the examples into Structural Matching. But. if we know that a square is a rectan-
gle, we can transform E into Ej:
E' = (rectangle x) & (blue x) & (ellipsoid B) [(= x A)]
There are now no discriminating occurences of x in E2 and El

We go on. We now choose the last constants C and D and replace them by the
variable y.
El = (rectangle x) & (blue x).& (ellipsoid y) [(= x A) (= y B) (s x y)]
E2 = (rectangle x) & (blue x) & (circle y) [(= x C) (= y D) (-s x y)]

I--A

P 83

We have added, for each example, the link (;t x y) in brackets,because the values
of x and y are different.
In E1 , there is only an occurence of y in the atom (ellipsoid y). It is a discrim-
inating one, because we do not fEnd such an occurence in E2.
In E2 , there is only an occilrence of y in the atom (circle y). It is also a discrim-
inating one.
If we know the rule: V x [(circle x) = (elipsoid x)].
we can transform E2 into E :
E, = (rectangle x) & (blue x) & (elpsoid y) [(= x C) (= y D) (d x y)]
The occurences of y in Ei and in E2 match structurally.
There are no more constants to be chosen.

We have transformed E, into Ei and E2 into E so that E' and E match struc-
turally. Moreover, we know that in Ei and in E2, the instantiations of x and y are
different. A generalization of E1 and E2 is therefore:
G = (rectangle x) & (blue x) & (ellipsoid y) & (s x y)
which means that in El and in E2. there are two different objects: a blue rectan-
gle and an ellipsoid.

2.3. Algorithm

Suppose we have n examples E1, E2 ... , E, that we want to generalize. Our gen-
eralization method consists of two steps:
First step: we put the examples into Structural Matching.
Second step: when the examples match structurally, we can then generalize
them. There exist a formula F and n substitutions ai so that for each i, a1(F) =
F A generalization of the examples is made from the common formula F and
the common links between the variables.

In this paper, we are interested in the first step: how to put the examples into
Structural Matching The algorithm used is quite simple: we repeat the following
operations until the examples match structurally, or until we have to stop

1- At each step, according to some heuristics, we choose a constant in each
example.

2- We replace all the occurences of these constants by a same Tentative General-
ization Variable. that we call a VGE.

3- We compare the occurences of this VGE in the examples and we try to make
all the discriminating occurences disappear. The notion of discriminatmg
occurence will be defined in section 3.1..

4- If it remains constants which have not been already chosen, we effect the
same operations 1, 2 and 3 with new constants, otherwise we stop.

This algorithm is a little simplitfed. In fact, during the algorithm, we may use
axnoms like:
V x [(A x) -=- (A x) & (A y) & (= x y)]. A being a given predicate.
Such axioms introduce new variables, these variables are not VGEs and are
treated as constants. These axioms are used in very specific cases, precisely
defined and controled and we shall not speak about them in this paper.

P 84

2.4. Importance of the axioms

In this paragraph, we only want to show how all kinds of axioms must be used.
For this, consider the two following examples:

Ei = (mammalian A) & (bred-by-man A)
E2 = (domestic B) & (viviparous B)

where (mammalian x) is a predicate which is true if x is a mammalian. (bred-
by-man x) is true if x is bred by a man, (domestic x) is true if x is a domestic
animal, and (viviparous x) is true if x is viviparous.

Suppose also that you know the three following rules:
RI: V x [(mammalian x) & (bred-by-man x) => (domestic x)]
R2 : V x [(domestic x) & (viviparous x) =:, (mammalian x)]
RS: V x [(domestic x) == (inoffensive x)]
where (inoffensive x) is true if x is in general, inoffensive.

How would you generalize the two examples? How can we control the use of the
axioms, without applying all the possible axioms on the examples?

A generalization of El and E2 is:
(mammalian x) & (domestic x)

and we shall see in paragraph 3.3. how we can learn it.

From now on, we suppose that we have n examples to generalize, and that we are
at step 3 of the algorithm of Structural Matching, that is to say that we have
chosen a constant in each example and replaced it by a VGE, named x, and we
are interested in trying to make the discriminating occurences of x disappear.

3 The elimination of Discriminating Occurences

3.1. Definitions

Consider now an example El and an occurence of x in that example. That
occurence is completely determined by the atom (P cv1 ... x ... cv,) of El in
which it occurs and by its position in that atom. It is important to also give the
position of the occurence in the atom, because a same atom can have several
occurences of x. In our notation, cvj represents either a constant or a VGE for,
at a previous step, it is possible that we chose a constant which occured in that
atom and renamed it with a VGE.

Definition 1
Let E, and E2 be two examples, and occ I (respectively occ 2) an occurence of x in
El (respectively E2). The occurences oc 9 and oct a are respectively given by the
atoms azomi=(P) cvn ... x ... cV.i.) and ,om2=(P 2 cvr; ... x ... cv,, 2) and by
their positions PI and p2 in these atoms.
We say that the occurence oCC 2 matches the occurence occi if atomI and atom 2
are formed with the same predicate, i.e. P2 = Pi and if the occurences have the
same position, i.e. PI = Pz

This definition is symmetrical: if occ 2 matches occ, then occ 1 matches occ 2 too.
We say that oc I and occ 2 match structurally.

P 35

Consider the two following examples:
El = (book A) & (pen x) & (on Ax) & (near Bx)
E2 = (book x) & (on x TABLE) & (near Cx)
Let occ, be the occurence of x in the atom (near B x) of Ej, and occ2 the
occurence of x in the atoni (near Cx) of E2. occ I and ocC 2 match structurally.
The occurence of x in E l defined by (pen x) and the occurence of x in E 2 defined
by (book x) do not match structurally, because the atoms, in which they occur.
do not have the same predicate.
The occurence of x in El defined by the atom (on Ax) and the occurence of x in
E 2 defined by the atom (on x TABLE), do not match strwturally, because x do
not occur at the same position in these atoms.

Definition 2
Suppose that we have a set E of a examples E. .E
Consider an example F of E and an occurence occi of x in E.
We say that occ, is a discrimn ing occurence of x in E, if there exists an exam-
ple Ej, j s i, of E such that no occurences of x in E. match occt.
E" is called a critical example of occ.

Suppose that we have three examples:
El = (book A) & (pen x) & (on x A)
E2 = (book x) & (on x TABLE)
Es = (book x) & (paper B) & (on B x)
The occurence occ I of x in El, defined by (pen x). is a discriminating occurence,
because there are no occurences of z either in E2 or in E -whose predicate is
"pen", and hence - hich match this occurence Its critical examples are E2 and
E3.
The occarence occ 2 of x in El defined by (on x A) is a discriminating occurence,
because the only occurence of x in E3, whose predicate is "on", is defined by (on
B x) and x is not at the same place as in El. Es is the only critical example of
OCC 2

This example shows us that we can see two kinds of critical examples for agiven
discriminating occurence: predicate critical examples and position critical
examples.

Definition 3
Suppose that we have a set E of n examples El ... , E,,
Consider an example E, of E and a discriminating occurence occ, of x in F. The
occurence occ is determined by the atom (Q cv1 ... x ... cvo) in which it
appears, and its position in that atom.
Consider E a critical example of occ1 .
We say that E; is a predicate critical example of occ1 , if no occurences of x in E-
occur in an atom whose predicate is Q.

In our previous example, E2 and E are predicate critical examples of occ1 .

Definition 4
With the same hypothesis as in deflnition 3, we say that E. is a po ition critical
example of ocet, if there exist in E. occurences of x whose atoms are formed
with the predicate Q but which never have the same position as oc c.

In our previous example, E3 is a position critical example of occ2.

-A

r

P 86

3.2. Using the adioms

We suppose that we have a discriminating occurence occ, of the VGE x in the
example E, and we want to make it disappear The occurence occj is defined by
its atom (P cvj., ... x ... cv.,) "and its position p, in this atom.

In a critical example, no occurences of x match occ, and we try to transform an
occurence of x in order to put it into Structural Matching with occi.

We may think that it wdl be simpler to treat a position critical example of occ,
than a predicate one, since it exists in a position critical example, occurences of
x, whose atoms are formed with the same predicate P as occi and therefore
which seem rather similar to occ. So, in a first step, we deal with the position
critical examples.

- First step:

Consider E., a position critical example of occ1 .

This example, 4, contains atoms (P cvj, ... x ... cv-.n), but x is never in the
posiilonp, in these atoms.

We try to apply axioms like commutativity, which invert the position of the vari-
ables.
The most general form of such axioms is:
... X- [(px,) = (P x.(1) ... X.(-))]
We must take care when we apply such anoms, especially if there are already
VGEs in the atom (P cv, ... cv,). If at a previous step, we introduced a VDE
named y, to go on we have put all the occurences of y into Structural Matching
Therefore, for each occurence of y in an atom at a given position, there exists in
each other example an occurence which matches it. If we change at another
step its position by applying such a rule, we must also change the position of all
the matchin occurences.

If we cannot apply such axioms, we treat E. as a predicate critical example of
occ., since it means that the presence of occurences of x in E, whose predicate
is the same as for occ, is not helpful.

For instance, if we have the two following examples.
E, = (near x B) & (left x B)
E2 = (near Cx) & left Cx) & (right Dx)
All !he occurences of x in El and in E2 are discriminating.
But. if we know the axiorrs:
R, : V x V y [(near x y) ,--* (near yx)]
we can improve the matching of El and ER.

7he example E2 is a position critical example for the occurence of x, defined in
E l by the atom (near x B).
But, in E2, 'we can apply R, to transform the atom (near Cx) into (near x C). We
have nowu:

E, = (near x B) & "eft x B)
Ez = (near x C) & (eft Cx) & (right D x)

P 37

The two occurences of x in (near x B) and in (near x C) match structurally. Let
us notice that the occurence of x, defined in E 2 by the atom (near Cx) -Ws 4
discriminating occurence. It was transformed into a matchin& occurence at the
same time.

The example E 2 is a position critical example of the occurence of x, defined in
El by the atom (Oeft x B). But the predicate "left" is not commutative. We can-
not treat it at this step.

Likewise. El is a position critical example of the occurence of x, defined in E
by the atom (geft Cze) and we cannot treat it it at this Step.

- Second step

We call RCE, the set of remaining critical examples of occ. This set is made of
the predicate critical examples of occt, and of the remaining position ones,
which have not been treated at the first step.

We try to see if there exist on the one hand, rules which can be applied to E
with the atom (P cv, ... x .. cvn), in which the occurence occt appear, to gen-
erate an atom (Q cv ... x cvl) and, on the other hand, rules which can be
applied to the examples E- of RCE to generate atoms (Q cvj ... x .. cvi), where
t occurence of x is at the same position as in (Q cv ... x ... cv).

For the same reason as in the irst step. we must take care to the VGEs already
present in the examples. AlU their occurences are in Structural Matching, and we
must not introduce new discriminating occurences of them.

The new atom (Q cvt ... x ... c'), generated in Ej must not be already present in
E , since it would bring redundant information.

It is not obvious to search for an atom (Q cv ... x ... c v), which satisdes the pre-
vious conditions Sometimes, a lot of atoms could be deduced from (P cv, ... x ...
cv.) and it may take too much time to verify, for each atom, if we can introduce
in the other examples occurences which match the new occurence, generated
by this atom. Presently, works are done to be able to eliminate quickly some
atoms which could be deduced from (P cv1 ... x ... cvA) but which could never be
deduced in other examples.

A particular case of this method is to try to deduce from each critical example.
an occurence of x, which match directly the occurence occt, de6ined by the
atom (P cv, ... x ... cv,). This is quite simple, because we know in this case that
we want to deduce from each critical example, an atom (P ... x ...

Suppose that we have the two following examples:
El = (rectangle x) & (near A x)
E]2 = (rhombus x) & (on x B)
All the occurences of x in each example are discriminatin& occurences.

For the occurence of x defined in E by the atom (near A x), we can apply the

rdes:
V'u I v [(on u v) (near uv)]

N --- -- ---

P 88

Vu ,Vv [(near uv) , (nearvu)]
to transforn the atom (on x B) into (near B x) in E2. This new occturence of x
match the occurence of x, defined in El by the atom (near A x).

For the occurence of x deflried in E, by the atom (rectangle x), we can apply the
rdes:
V [(rectangle u) (parallelogram u)]
V t (rhombus u) (parallelogram u)]
to transform the atom (rectangle x) into (parallelogram x) in El and the atom
(rhombes x) into (parallelogram x) in E2.

Therefore, we transform El and E2 into
Ej = (parallelogram x) & (near A x)
E2 = (parallelogramx) & (near Bx)

There are no longer any discriminating occarences.

Remarks:

- This last example shows us, that often when we treat a discriminatmg
occurence in an example, we often treat at the same time, discriminatmg
occurences of other examples.
For instance, when we treat the occurence of x defined by the atom (near Ax) in
El. we dealt at the same time with the discriminating occarence of x, defined in
E 2 by the atom (on x B). We treat also the occurence of x defined in E2 by the
atom (rhombts x), at the same time as we treat the occu(rence defined by the

atom (rectangle x).
We modify some discriminating occurences, according to our needs for the
discrismnating occurences, previously chosen. To choose a discriminating
occurence rather than another may lead to a different result.

Moreover, when we apply an axiom, which is not an equivalence, we loose infor-
mation. If we had the occurence occ, defined by the atom (P cvI ... x ... cv.) and
if we apply the axiom (P ul ... x ... u.) =* (Q v I ... v,), we loose the fact that
there was an occureace of x in an atom whose predicate is P. We may need that
occurence of x for another discriminating occurence in another example.

To avoid this, when we apply a rule which is not an equivalence, we do not
replace (P cv,1 ... x ... cvin) by (iQ ... x ...) but replace it by (P cv I ... x ... cv,,) & (Q

-.), and we mark P to remember that this occurence of x it, the atom (P cv 1
x ... cv-) has already been dealt with. When all the discriminating occurences

of x in all the examples have been treated, we can then drop the marked predi-
cates.

- If occ% is a discriminating occurence and if F_ is a critical example of occL, we
search for occurences which can be transformed to match occi among all the
occurences of x, and not only among the discriminating ones. If we find in E. an
occurence defined by (Q ... x ...), which is not discriminatifig and which can be
transformed in (P ... x ...) to match occ, we use idempotency and replace (Q ... x
...) by (Q ... x...) & (... x ...).

3.3 Eaample

P 39

Let us consider now the examples in paragraph 2.4.. We have given a generali-
zation of them, but let us see how we can get it.

The examples are:
El= (mammalian A) & (bred-b y-man A)

E2 = (domestic B) & (viviparous B)

and we know the three following rules:
RI: V x [(mammalian x) & (bred-by-man x) =* (domestic x)]
R 2. V x [(domestic x) & (viviparous x) > (mammalian x)]
R3: V x I (domestic x) * (inoffensive x)]

First of all, we have to choose a constant in each example and replace them by a
VGE. There is only a constant in the examples, so we choose them and replace
them by the VE x.

El (17mmlinxL & (bred-by-man x)(x A)]
Ez= (L est" x & (viviparosx) [(= x B)]

We underline the discriminating occurences and we mark by a star the discrim-
Lnatiag occureaces, which have been already treated.

All the occurences of x are discriminating ones. We consider the first occurence
of Ej, defined by the atom (mammalian x). We see that we can deduce this atom
from E2, using the rude R 2 . We get.*

El= (mammalian x) & (bred-by-man Vx (x A)]
E'= (omesrtic x) & (1'Jiviarousx x) & (mammalian x) [(= x B)]

There are still three discriminating occurences defined by the atoms (bred-by-
man x), (domestic x) and (viviparou.s).

We consider the discriminating occ"rence of El defined by the atom (bred-by-
man r).
- No rule can be applied to E2 to make appear (bred-by-man x).
- We can apply the rule R , on El using the atom (bred-by-man x). It generates
the 4tom (domestic z) and there is an occurence of x in E2 which match this
occurence. 7Tewrefore, we apply R, and we mark with a star the atom Pbred-by-
man .) to rememb.!r it has already been treated.

l = (mammalian x) & " .rd-by-an x) & (domestic x) x xA)]
E2: (domestic x) & (taosx&(mammalian x) [(= x B)]

It remains only a discriminating occarence, wuhich has not yet been treated, the
occarence defined in E 2 . by the atom (viviparous x).
- No rules can be applied in El to make appear the atom (viviparous x).
- The only rule, which can be applied in E2 -with the atom (viviparous x) is the
rude R 1 . But, it would introduce the atom (mammalian x), which is already
present in E2 , it would not bring new information.
No rdes can be applied, we mark the atom (viviparous x) to remember that the
ocurencc of x ir. this atom has already been deal-t .ith We get:

El= (mammalian x) & *(bred-by-man X) & (domestic x) [(= x A)]

P 90

£2 =(domestic x) & *(viviparous x) & (mammalian x) [(x B,)]

All the discriminating occurences have been dealt with. We drop the remaining
discriminating occurences, which can never be put into structural matching.
We get:

El=(mammalian x) & (domestic x) [(x A))
E2 = (domestic z) & (mammalian x) [(x B)]

The two examples match structurally. A generalization of them is made of the
common formula and the common links between the variables. There are no
common links. A generalization Gis therefore:

G = (domestic x) & (mammalian x)

3.4 Classes of predicates

For each discriminating occurence occ,, in all the critical examples of occ , we
search for an occurence which can be transformed to match occ,. In order to
refine this search, we define classes of predicates.

Definition 5
Let R be a rule.
We write PredR, the set of predicates used in R, both in the conditions and in the
action of R.

For instance, consider the rule RI:
V X [(grass x) & (ear y x) = (grass-eater y)]
then PredR1 = 1grass, eat, grass-eater}

Deftnition 8
Let R be an axiom and C a set of predicates.
We say that R is linked to the class C if PredR n C s 0, i.e. if one or more of the
predicates of R also belongs to C.

For instance, if C = Isquare, rectangle, ellipsoidl, the rule
V x [(circle x) :;> (ellipsoid x)] is linked to C, because the predicate "ellipsoid'
of this rule belongs to C.

We construct the classes as follows:
- We choose a rule R of the knowledge base and we construct the first class
made up of the predicates of R, and, if R has no preconditions, of the boolean
value "true".
To sum up:
If R has preconditions, C1 = PredR
otherwise C, = PredR u truel.

- If we suppose that p classes C1 ,. have been constructed, we consider a
rule RNr of the knowledge base whichhas not yet been treated. Two cases are
possible:

- First case: RNT is linked to a class Ct
in that case, ec C1, bc the classes linked to RNT We replace these classes
by the class C defined by:
if RNT has a precondition, C = u& C. u Predjy7

pI

otherwise C = u, C* U 1'edpR,7 U [true)
- Second case: RNT is not linked to any class.

We create a new class made up of the predicates of RNT and of the boolean value
"true" If RNT has no preconditions.

For instance, if we h ave the following axioms:
R , ." V x [(ra.ss) & (eat y x) => (s- atery)]
R 2 : "Vx (coloredx)
R3 V x [(square x) (rectangle x)]
R 4. VX [(sq are x)= (rhomb ux)],
we define three classes of predicates.
C = [grass, eat. grass-eaterl
C2 = Itrue, coloredj
C8 = {square, rhombus, rectangle)

The classes of predicates are interesting for two reasons:
- If P is a predicate used in the representation of E and belongs to the class C
and. if in another example Ej, j * i, there are no predicates belonging to C, we
cannot put the atoms whose predicates are P into Structural Matching with
atoms of E-. We know, before using the algorithm of Structural Matching, that we
cannot put the examples into Structural Matching.
- If occ1 is a discriminating occurence of E, whose predicate P belongs to the
class C, we must search for, in the critical examples of this discriminating
occurence, occurences whose atoms also belong to C. It reduces the search.

4. Conclusion

In ths paper we have shown how axioms can be used to put examples into struc-
vural matching Several problems have not been yet treated.
We have defined classes of predicates to decrease the search among occurences
and among axioms, when we have a discriminating occurence. We have not seen
how we can represent axioms to improve their use.
If occ, is a discriminating occurence and if E, is a critical example of ocs, we
can perhaps introduce different occurences which match occ, How is it to be
chosen one? It may happen that the first occurence found will not lead to the
best generalization.
Tis paper gives some indications on how improving Structural Matching, but
still much work is to be done.

REFERENCES
(Bolinger 86)

Thise de troisi~me cycle (not yet published)
(Biermann 84)

Biermanz A.W., Guiho G., Kodratoff Y. eds
Macmillan Publishing Company, 1984, pp. 463-482.

(Dejong and Mooney 86)
Dejong G., Mooney R., "Explanation Based Learning an alternative

view".
Machine learning, 2, 1986.

(Ganascia 1985)
Ganascia J.G, "Comment oublier a laide de contres exemples",
in Comptes rendus du congres Reconnai.ssances des Formes et Intelli-

gence Artificielle, AFCET, Grenoble 1985.
(Kod.ratoff 83)

Kodratof! Y.: "Generalizing and particularizing as the techniques of
learning"

Computers and Artificial Intelligence 2, 1983, 417-441.
(Kodratoff 84)

Kodratoff Y., Ganascia J.-G., Clavieras B.. Bollinger T., Tecuci G.:
"Careful generalization for concept learning"
Proc. ECAI-84, Pisa 1984, pp. 483-492.

(Kodratoff 85)
Kodratoff Y.: "A theory and a methodology for Symbolic Learning"
COGNITIVA 85. June 4-7, 1985, pp. 639-651.

(Michalski 84)
Michalski R.S. "A theory and Methodology of Inductive Learning"
Machine'Learning, an Artificial Intelligence Approach.
Michalski R.S., Carbonell J.G., Mitchell T.M. eg
Springer Verlag 1984, pp. 83-129.

(Mitchell 83)
Mitchell T.M.: "Learning and Problem Solving"
Proc. IJCAI-83, Karlsruhe 1983, pp. 1139-1151.

(Mitchell 83)
Mitchell T.M, Utgoff P.E., Banerli R.: "Learning by experimentation,

acquiring and refining problem-solving heuristics"
Machine Learning, an Akrtificial Intelligence Approach,
Michalski R.S, Carbonell J.G., Mitchell T.M. eds, Tioga Publishing Com-

pany 1983, pp 163-190.
(Mitchell et Al. 86)

Mitchell T, Keller R.M., Kedar-Cabelli S.T.,"Explanation Based Learn-
ing, a unifying view ",

Machine Learning 1, Kluwer Academic Publishers, 1986.
(Vere 80)

Vere S.: "Multilevel CounterfactuaL5 for Generalizations of Relatioaal
Concepts and Productions",

Artificial Intelligence 14, pp. 139-164, 180.

P 93

OBJECT ORIENTED GENERALIZATION : A TOOL FOR
IMPROVING KNOWLEDGE BASED SYSTEMS

M. MANAGO (mvm@lri.UUCP)

U.A. 410 du CNRS, Laboratoire de Recherche en Informatique
Bctiment 490, Universite de Paris-Sud

91405 ORSAY Cedex

ABSTRACT.
This paper is a presentation of the "object-oriented" generalization algorithm MAGGY. It is
inspired by (and reacts to certain deficiencies of) the "predicate-oriented" generalization
algorithm AGAPE which was developped in our research group. MAGGY outputs the minimal
conjunctive generalizations of a set of positive examples. By looking at each negative example
individually, it then specialize or regeneralize when needed.

I. Theoretical background.

In this paper there will be no attempt to give a formal logical definition of
generalization as it is done, for instance, in [Kodratoff & Ganascia 84,
Bollinger 86]. Nevertheless, we will give an intuitive definition of what
generalizing means for us

I.A. Intuitive definition of generalization.

The intuitive set definition [Vere 80, Sammut 81] of generalization is as
follow :

"A set X is more general than a set Y if Y is included in X."

,A

Object oriented generalization
P 94

It is difficult to prove automatically that a set is included in another one
when considering variables (links between variables), properties of the
connectives and rules (meta-rules) of generalization (which might take
into account domain specific knowledge).

For example, one can see that G: (x ISA POLYGON) & (x ISA CIRCLE) is a
generalization cf El : (x ISA SQUARE) & (y ISA CIRCLE) & (y ISA
REDOZJECT)

Using this definition, it is possible to use the dropping rule (A is more
general than A & B) on some attributes of an object. For instance, the
atomic formula (y ISA RED-OBJECT) in El has been dropped. Nevertheless,
it is not possible to drop all the attributes of an object (this amounts to
dropping the object itself).

According to our definition, the formula G : (x ISA SQUARE) is not a valid
generalization of El : (x ISA SQUARE) & (y ISA SQUARE). This is due to the
fact that we try to compare a set of pairs (El) with a set of singletons (G).

When the semantics of El is "there are two squares x and y, x May Be the
Same y (Hayes-Roth 78]", El is a generalization of G. Indeed, we can use
the idempotency of the logical & and transform G into (x ISA SQUARE) & (x
ISA SQUARE) which is clearly a specialization)f (x ISA SQUARE) & (y ISA
SQUARE) [(x MBS y)]. Hence, the dropping rule used on objects is not a valid
rule of generalization (this is actually due to the fact that the MBS link is
an implicit disjunction).

In our formalism, we consider that the semantics of El and G are "there
are at least two distinct squares" and "there is at least a square". It is
intuitively clear that G is a generalization of El. Therefore, we allow the
dropping of objects in MAGGY. Note that a formal definition of
generalization which allows the dropping of objects involves constructing
projections into a space of lower dimension (with fewer objects).

I.B. Concept learning.

We define a primary concept as a set of instances which give the va!ue
TRUE to an atomic formuia.

We define a concept as a set of instances which give the value TRUE to
some cniunction of atomic formulae
Consider the conjunctive formula: (x ISA BRICK) & (y ISA BRICK) & (z ISA

AD-4173 866 M3OUDIg FdTHE IN! O9MI, IRPEIN 2/3

UNCLASSIFIED H ~~V FACL PJIIOILg L

-.
e

1..8

1140111.25.
_________ BII ' 1 1.6

IIII[N I IIIla
12 11111- -11.

MICROCOPY RESOLUTION TESI CHARI

NA10NAL TANt,AW
t

Pr

Object oriented generalization P 95

BRICK) & (x IS-SUPPORTED-BYy) & (x IS-SUPPORTED-BYz) & -,(y TOUCH z).
The set of triplets (A,B, C) which make this formula TRUE when
substituted for x, y and z, is a concept which we call an arch [Winston 75].

We define these formulae with unquantified variables to be recognition
functions. They split the universe of instances into 3 classes : the
instances which give the value TRUE to the formula, the ones which give
the value FALSE and the ones which give the value UNKNOWN. It is
important to remember that in this paper, a recognition function is always
a coniunctive formula.

From a list of positive and negative examples of concepts, MAGGY finds
concepts which are more general than the positive examples and which
reject each negative example. This is done in three steps:

1) find a list of minimal (as specific as can be) conjunctive
generalizations of the pvsitive examples. MAGGY finds the generalizations
in a specific order according to some heuristics (see next section). We call
this module the generalizer.

2) Test the list of generalizations against the negative examples. The first
one which is consistent (it rejects every negative example) is passed to
the regeneralizer. If none is consistent, one is passed to the specializer.
We call this module the critic.

3a) The generalization is specialized until a set of consistent recognition
functions is obtained. We call this module the specializer.

3b) The expression is generalized again until a consistent recognition
function which is maximal (as general as can be) is obtained. We call this
module the regeneralizer.

In a knowledge based system using production rules (P1 & P2 &...& Pn = C),
for a given conclusion C, the positive examples are the preconditions of
the rules concluding to C. The negative examples are the preconditions of
all the other rules. After obtaining a consistent set of generalizations of
the positive examples G1 ... Gm we can generate the production rules:

G 1 = C "" Gm = C [Michalski & Chilauski 80]
In term of rules, the generalizer and the specializer are used to generate
fewer rules which reach the same conclusions. The regeneralizer is used
to remove redundant preconditions in the rules.

96 Object oriented generalization

We will see in section II.B that MAGGY also learn that new primary
concepts are needed to enrich the language of description.

II. MAGGY.

II.A. The generalizer.

II.A.1. Knowledge representation.

MAGGY uses ordered networks to represent relations of generality between
predicates. These are frames [Minsky 75] with SS (subset) and PART-OF
slots. A predicate can have more than one father, the sons are not
necessarily a partition of their father (the concept they represent can
overlap and they do not have to exhaust all the possibilities of their
father) and there are different kinds of links of generality. This improves
very much the classical taxonomic representation.

hous plg

To represent the examples, MAGGY uses an object-like language with
variables. This allows to represent a RED-SQUARE in term of the primary
concepts square and red-object: (x ISA SQUARE) & (x IS RED). This
representation improves the efficiency of the system. It is possible (as it
is done in PLAGE [Gascuel 86]) to generate every possible combinations of
primary concepts and have RED-SQUARE appearing in the frames as subsets
of SQUARE and RED. Nevertheless, when there are many attributes, the
combinatorics rapidly become out of hand. By using a language of first
order logic, we are not faced to this problem. We only use the primary
concepts which were given by the user. To simplify the notation, we will
regroup all the attributes of an object. The previous example would be
rewritten as [x:" (ISA SQUARE) (IS RED)].

Object oriented generalization
P ?

II.A.2. Matching objects.

MAGGY is a program which identifies sub-descriptions of examples which
can be generalized. The object matcher decides which objects are going to
be matched according to some heuristics and the structural matcher match
these. We will not describe in here structural matching (see [Vrain & all
86]). The heuristics of generalization used by the object matcher are (in
this order):

- Minimize the use of the dropping rule on objects
- Minimize the use of the dropping rule on attributes
- Minimize a conceptual distance between attributes (minimizes how high
we climb the generalization frames)
- Favor some user given attributes

Consider the following examples:

El : [x (ISA SQUARE) (IS RED)] & [y (ISA TRIANGLE) (IS GREEN) (IS-ON x)]
E2: [x (ISA SQUARE) (IS GREEN)] & [y (ISA TRIANGLE) (IS RED) (IS-ON x)]

The generalizer finds the two minimal conjunctive generalizations:

G 1: [objl (ISA SQUARE) (IS COLORED)] & [obj2 (ISA TRIANGLE) (IS GREEN)
(IS-ON obj 1)]
G2: [obj (ISA POL YGON) (IS RED)] & [obj2 (ISA POL YGON) (IS GREEN)]

which mean respectively "there is a colored square and a colored triangle
and the triangle is on the square" and "there is a red polygon and a green
polygon" * G 1 is found first as it minimize the number of attributes
dropped.

Consider now the following example

EATING-INSTRUMENT

ORIENTAL-EAT G-INSTRUMENTp

CHINEESE-CHOPSTICK

F98 Object oriented generalization

El: [x (ISA CHINEESE-CHOPSTICK) (IS RED)] & [y: (ISA
CHINEESE-CHOPSTICK) (IS RED) (IS-IN GOLD)]
E2: [x: (ISA FORK) (IS RED) (IS-IN GOLD)]

The generalizer finds the generalizations:

G 1: [obji: (ISA EA TING-INSTRUMENT) (IS RED)]
G2: [objl: (PART-OF obj2) (IS RED) (: 3-IN GOLD)] & (obj2 ISA
EATING-INSTRUMENT)

This because G 1 minimizes the dropping of objects.

The generalizer uses an "intelligent" depth-first search algorithm. This
could be improved by maintaining an agenda for the backtracking. As we
eventually try every possible match for an object, combinatorics could
become a problem. In our application (plant pathology) it is not a problem
since there are, on the average, few objects which can be matched
different ways.

Furthermore, the combinatorics is reduced by forbiding dropping certain
attributes. For instance, attributes describing relations between objects
((ON x), (NEAR x), (LOVE x), etc...) and certain special attributes which
give a type to the object. For example, in plant pathology, it does not make
sense to match a green leaf and a yellow spot since LEAF and SPOT belong
to different frames and cannot be dropped (we use a user filled
CANNOT-DROP slot in the frames in order to know the attributes that can
be dropped).

The generalizer preserves and enhance certain features of AGAPE [Vrain &
all 1986] which are structural matching and adjunction of links between
predicates.

From the descriptions "there is a blue triangle with a blue spot" and "there
is a yellow square with a yellow spot", the generalizer finds the
generalization "there is a colored polygon with a spot of the same color".

Of course, depending on the application there can be other links between
predicates such as different, odd-number and so on. These links are not
always relevant. Nevertheless, they might turn out to be essential to
obtain a generalization which rejects the negative examples and they
should not be dropped as a side effect of the algorithm (as it is the case in
most bottom-up generalization algorithms).

Object oriented generalization
P9.9

II.B. The critic.

The modules described in the rest of this article have not yet been
implemented. This will be done shortly.

The critic sequentially compare the minimal generalizations produced by
the generalizer with each negative example taken individually. The first
generalization which does not cover any negative example is passed to the
regeneralizer. If none is found, the critic try to explain why the
generalization covers some negative examples. This is done by observing
which attributes of the positive examples have been over-generalized or
should have their value filled in. The best result is obtained when we find
a negative example close the positive examples (a near miss [Winston 75]).

Consider the following example :

Let E land E2 be examples of a concept, and CE a near miss.

E 1: [x.* (IS RED) (ISA SQUA RE)]
E2. [x. (IS YELLOW9 (ISA SQUARE)]

CE: [obji: (IS BLUE) (ISA SQUARE)]

MAGG Y outputs the generalization G: [ob] 1. (IS COLORED) (ISA SQUARE)]
which covers CE MAGG Y offers to the user to create a new primary
intermediary concept which is an ancestor of YELLOW and RED but not of
BLUE The color frame is then interactively changed into:

Object oriented generalization
!01

We then obtain the generalization G': [objl: (IS WARM-COLORED) (ISA
SQUARE)] which rejects CE.

The critic also attempt to fill up missing NOT in the descriptions of the
positive examples. Indeed, a human being usually forgets to mention the
attributes which must be false in the descriptions of the examples. This is
illustrated in the arch example:

Let G be a generalization of the arch concept.

G: (objI ISA POLYHEDRAL) & [obj2: (ISA BRICK) (SUPPORT objl)] & [obj3:
(ISA BRICK) (SUPPORT obj1)]

and let CE be a near miss of this concept

CE. (obj 1 BRICK) [obj2 (ISA BRICK) (SUPPORT obj 1)] & [obj3: (ISA BRICK)
(SUPPORT objil) (TOUCH obj2)]

CE is covered by G. This is due to the fact that we are using the dropping
rule on the attribute TOUCH(y). As TOUCH(y) takes the value UNKNOWN in G,
we offer the user to add to the descriptions of the positive examples
-7(obj3 TOUCH obj2) which will appear in G (note that we first have to
check if twe did not drop the attribute TOUCH(y) in one of the examples
when we generalized).

The critic also uses default values to fill in forgotten information. If one
of the default attributes of an object discriminate the negative example
which is covered, we automatically fill in the value for this attribute in
the generalization. The default attributes are found in the frames.

II.C. The regeneralizer.

A

Object oriented generalization
P 21i

The regeneralizer is similar to Buchanan's RULEMOD module in
META-DENDRAL [Buchanan 78], AGAPE's over-generalization [Clavieras 84]
or Michalski's extention against the negative examples [Michalski 83]. It
removes attributes (or objects) which are not discriminant and generalize
as much as possible the discriminant ones as shown in the following
example:

El: [x: (ISA SQUARE) (IS RED)]
E2: [x (ISA SQUARE) (IS BLUE)]
CE1:[x: (ISA STAR) (IS GREEN)]
CE2: [x: (ISA CIRCLE) (IS PURPLE)]

After generalization we obtain G: [objI (ISA SQUARE) (IS COLORED)].
Assuming that the CANNOT-DROP slot of COLORED is set to NIL, we obtain
after regeneralization G': (obj1 ISA POLYGON).

The information about which attributes are discriminant is provided to the
regeneralizer by the critic who explains why G does not cover the negative
examples. It is obtained by putting the positive and the negative examples
in structural matching and analysing the differences between the
expressions.

1.D. The specializer.

The specializer is a top down algorithm. By specializing the expression
provided by the critic, it rejects the negative examples until it obtains a
set of consistent generalizations of the positive examples. The goal is to
minimize the cardinal of this set (it obviously lies in between 1 and the
number of positive examples). This is illustrated by the following example:

El: [x: (ISA SQUARE) (IS RED)]
E2: [x: (ISA SQUARE) (IS GREEN)]
E3: [x: (ISA CIRCLE) (IS GREEN)]

CE [x: (ISA CIRCLE) (IS RED)]

The expression given to the specializer by the critic is G: [objl : (ISA
CONVEX) (IS COLORED)] which covers CE. The explanation is that the ISA
and IS attributes of the positive examples have been over-generalized.

The specializer "un-generalize" one of the attributes which was
over-generalized. This attribute is choosen according to the following

Object oriented generalization

heuristics (in that order)
- maximize the number of negative examples which will be rejected by
specializing the attribute
- maximize the size of the clusters of positive examples
- use the heuristics of generalization mentionned in section ll.A.2.

In the previous example, chosing either attributes leads to the same
result. The critic accept both solutions which are:

G1: [objl: (ISA SQUARE) (IS COLORED)]
E3. fobl 1: (ISA CIRCLE) (IS GREEN)]

G1: [objl : (ISA CONVEX) (IS GREEN)]
E2: [objl: (ISA SQUARE) (IS RED)]

The specializer actually allows to construct consistent packages of
positive examples (these are not necessarily clusters as the packages can
overlap each others). When these packages are found, the critic pass the
recognition functions to the regeneralizer.

1II. Perspectives for the future.

The weak feature of MAGGY is that it cannot yet deal with incorrect
descriptions (noise). For a detailed discussion of what noise can be, see
[Kodratoff & all 86]. We will try to solve some of the problems relating to
noise by injecting top down reasoning (A [a ID3 [Quinlan 83]) into MAGGY.
Bringing numeric learning techniques (that can cope with noise very well)
into a symbolic learning program will, in our opinion, be very benefical to
both methods.

ACKNOWLEDGMENTS

This work has been partially supported by Greco and PRC Intelligence Artificielle, by ESPRIT
contrat INSTIL 1063 and by Apollo computer. It was done in Dr Yves Kodratoff's research group
at the Universite d'Orsay Paris-sud. MAGGY is written in LELISP on a VAX 750. It will soon be
reimplemented in common lisp on an Apollo DN3000 work-station.

REFERENCES
P 103

Buchanan 781 Buchanan, B. G. and Feigenbaum, E. A.
DENDRAL and Meta-DENDRAL: their applications dimension
Artificial Intelligence 11, 1978.

[Buchanan & Shortlife 84] Buchanan, B. G. and Shortlife, E. H.
Rule-based expert systems Addison-Westley Publishing
Compagny Inc., Reading, Massachussetts 1984.

[Bollinger 86] Bollinger, T.
G6n~ralisation en apprentissage t partir d'exemples
Thbse de troisibme cycle, Universite d'Orsay Paris-Sud 1986.

[Clavieras 84] Clavieras, B.
Modification de la repr6sentation des connaissances en
apprentissage inductif. Th~se de troisibme cycle, Universit6
d'Orsay Paris-Sud 1984.

[Ganascia 85] Ganascia, J.G.
Comment oublier cA I'aide de contre-exemples
Proceeding of the 5th AFCET conference, Grenoble 1985.

[Gascuel 86] Gascuel, 0.
PLAGE: A way to give and use knowledge in learning.
Proceedings of the European Working Session on Learning 1986,
Universite d'Orsay Paris-sud 1986.

[Hayes-Roth & McDermott 78] Hayes-Roth, F., McDermott, J.
An interference matching technique for inducing abstractions
C. ACM 21, 1978, 401-411.

[Kodratoff & Ganascia 83] Kodratoff Y., Ganascia J.-G.
Improving the generalization step in learning
Proc. International Machine Learning Workshop, Monticello 1983.

[Kodratoff & all 86] Kodratoff Y., Manago M.,Smallman S., Blythe J., Andro T.
Integration of numeric and symbolic techniques in learning
submitted for publication, AAAI workshop Banf Canada.

[Fu & Buchanan 85] Fu Li-Min, Buchanan B. G.
Inductive knowledge acquisition for rule-based expert systems
Knowledge system laboratory, Computer Science department
Stanford University.

[Michalski & Chilauski 80] Michalski, R. S. and Chilauski, R. L.
Learning by being told and learning from examples: an
experimental comparison of the two methods of knowledge
acquisition in the context of developing an expert system for
soybean disease diagnosis.
Policy analysis and information systems, Vol 4 No 2 June 1980.

[Michalski 83] Michalski, R.S.
Theory and Methodology of Inductive Learning M'chalski R.S.,
Carbonell J.G., Mitchell T.M. eds, "Machine Learning, an Artificial
Intelligence Approach." Tioga Publishing Company 1983.

[Minsky 75] Minsky, M.
A framework for representing knowledge. P.H. Winston ed, "The
psychology of computer vision", Mc Graw-Hill, New York 1975.

[Mitchell 78] Mitchell, T. M.
Version Spaces: An approach to concept learning.
PhD thesis, Stanford University, December 1978.

[Quinlan 83] Quinlan, J. R.
Learning efficient classification procedures and their
application to chess end games. Michalski R.S., Carbonell J.G.,
Mitchell T.M. eds, "Machine Learning, An Artificial Intelligence
Approach", Tioga Publishing Compagny 1983.

[Sammut 81] Sammut, C.
Learning concepts by performing experiments. Dept of Computer
Science, University of New South Wale Australia, nov 81

[Vere 80] Vere, S. A.
Multilevel counterfactuals for generalizations of relational
concepts and production rules. Artificial Intelligence J.
14,1980, 139-164.

[Vrain & all 86] Vrain C., Manago M., Ganascia J. G., Kodratoff Y.
AGAPE: An algorithm that learn from similarities. Proceedings of
the European Working Session on Learning 1986, Universite
d'Orsay Paris-sud 1986.

[Winston 75] Winston, P.H.
Learning Structural Descriptions from Examples. Winston, P. H.
ed, "The psychology of computer vision" McGraw-Hill, New York
1985.

A1mml m mm -m m mmlu • • W mmmm mm i

MACHINE LEARNING AND META-LEVEL INFERENCE

Stefek J. M!ALK;OWSKT Zaba

-EA"'-mn, r:14C4RD - Ei",-on Road Stoke GJilford BS7L35:2 280

ANG rA ID

Machine Learning and Meta-level Inference

A tstract

The technique of meta-level inference has been reported in the literature as
having a number of benefits arising from the strong separation between object
and meta levels, corresponding to "what" and "how" knowledge respectively.
We investigate the impact on and scope for machine learning when such a
separation is adopted. We analyse some existing machine learning work in
this light, looking in particular at some recent work of Steels and van de Welde
on learning in second-generation expert systems. We argue that a more
satisfactory account of that work is given by a reconstruction using the
techniques of meta-level inference.

0. Introduction

The technique of meta-level inference (Bundy79] separates knowledge of a domain from
knowledge required to derive the solution of particular problems in that domain. By virtue of this
separation, it may become possible to use a highly expressive notation to describe the domain,
while preventing combinatorially explosive search by using additional knowledge to guide the
search for solutions to particular classes of problems.

In this paper, we describe the technique of meta-leve! inference, suggest that it provides a
general framework for the organisation of knowledge-based systems, and look at the effect of
adopting the separation of levels on machine learning. We then look in some detail at the Second
Generation Expert Systems work of Steels et al [Steels85a,85b], which is representative of a wider
class of systems employing deep models as a supplement to shallow associations, and argue that
a reconstruction using the techniques of meta-level inference will allow a more principled account
of this system, and its learning component in particular.

1. What is meta-level inference?

. 'Meta-level inference is a framework for designing and implementing knowledge based systems.
Its fundamental principles are the separation of object level from meta level, and the use of
inference at the meta level to cause problem-solving inference at the object level.

In terms of symbol manipulation, the object level defines a language and rules for manipulating
sentences of that language. The meta level defines another language, the constants of which
include sentences of the object level language and the rules of object level symbol manipulations.
The meta level has its own rules for manipulating sentences of the meta level.

For this symbol manipulation to be useful in designing and implementing knowledge based
systems, we must ascribe meaning to the symbols and manipulation rules at each language level.
Typically, the object level will describe the objects and relations in the domain: informally, we may
call this "what' knowledge. The meta level contains additional knowledge about the object level
which catalogues and organises it in order to effectively solve particular problems in the domain:
we may call this 'how' kncv-ledge.

The outline above has talked only of symbols and ascribing meaning to them, avoiding any
commitment to particular representations - frames, production rules, or logic-based notations. The

P 707

most theoretically satisfactory account of both symbol manipulation and ascribing meaning to such
symbols - semantics - is, we feet, provided by the work on formal logic. Paraphrasing
{McCarthy69], the apparatus of formal logic provides us with a powerful tool for establishing the
epistemological adequacy of a given notation: that is, for deciding whether a body of knowledge
represented in a given notation is capable in principle of deriving a given conclusion. The heuristic
adequacy of a notation . that is, its ability to effectively and efficiently derive that conclusion in
practice - is not addressed by formal logical analysis. The swing away from logic-based notations
in Al work has, we feel, been caused by the heuristic rather than the epistemological inadequacy of
these notations. We are investigating how the use of formally well-founded logical notations at
both object and meta levels can recover heuristic adequacy for particular subclasses of the
possible object level deductions.

The remainder of this section expands this introduction to the concepts, and describes some of
the advantages claimed for this organisation of knowledge.

1.1 Description of meta-level inference

The basic idea of meta-level inference is the clear separation of factual information about a
problem domain from control information which can guide reasoning with that information. The
object level is factual in the sense that it is a theory: it is a symbolic representation in some logic
that captures an idealisation of the world. An object level theory can state both facts and rules
about the domain of interest. The rule All men are mortal is an example of an object level rule.
Facts and rules must be represented in some logic which defines a syntax of well-formed formulae.

A logic also defines ways in which well-formed formulae can be combined together to produce
new ones: that is, it defines how new factual information can be derived from what is known.
These ways of combining formulae are called the inference rules of the logic, and are not to be
confused with the factual rules written in the logic. It is an inference rule that allows us to
combine.Socrates Is a man and All men are mortal to deduce Socrates is mortal.

The object level theory can be used to answer problems about a domain in the following way.
The theory contains a number of axioms - facts and rules that economically capture the behaviour
of the domain in a general way. To these we add hypotheses wnich describe the particular
problem and a description of the goal statement that we reouire. By a process of theorem proving
we then try to derive the goal statement from the axioms plus hypotheses. The point here is that
the theory contains all the information necessary in principle to state the problem and derive an
answer.

Unfortunately, the blind application of the rules of inference that the object level logic provides
us with is insufficient in practice to find the answer, since in anything beyond a trivial theory the

blind application of the inference rules is combinatorially explosive and produces overwhelmingly
more useless conclusions than useful ones. Etforts to invent clever control procedures (called
uniform proof procedures) that would work on all theories in a logic have failed. They failed
because when we reason with theories we use a great deal of knowledge to guide our reasoning.
This knowledge is particular to the problem domain of the theory in question and is used to select
the facts and rules that will take part in inference steps.

Adding the control

What is a required is a way of formalising the knowledge used to guide the search for a proof.
Meta-level inference techniques allow this to be done by creating a theory of the conditions under
which various object level facts and rules should be used. Because these statements are aoout an
object level theory they belong to a metatheory of the domain. We can then reason acout the
object level theory by reasoning in the metatheory. What this means is that inference at the

meta-level manipulates the object theory as a data object according to the object level rules of
inference as a side effect of its own reasoning.

We can conceptualise this "proof by side-effect" as the metatheory being a higher level
abstraction of the domain. Metatheories express such ideas as to solve this sort of problem first
break it into the following steps, and always try to solve this sort of sub-problem first. From a system
point of view however the meta-level lies beneath the object level and can be thought of as an
interpreter for it. This combination of conceptual abstraction and control by interpretation
produces a system of considerable flexibility and power in problem. solving.

1.2 Benefits of meta-level inference

Epistemological hygiene

The advantages of separating logic from control for understandability, maintainability,
knowledge acquisition, and re-usability have been argued strongly by many workers in the field,
including [Kowalski79] and [Clancey83].

Soundness of object-level inference

Since problems are stated and solved solely within the object level, the control heuristics of the
metatheory cannot introduce errors of commission. The metatheory constrains the combination of
object level formulae by object level rules of inference to produce new object level formulae. If the
object level rules of inference are sound, the object level proof induced by such a metatheory will
be sound. The metatheory will, however, usually be incomplete with respect to all the possible
consequences of the object level formulae and rules of inference. This makes more precise the
earlier idea of "particular subclasses of the possible object level deductions" for which we can
hope to "recover heuristic adequacy".

Reduction of search space

The metatheory induces only a subset of the object level inferences sanctioned by the object
level rules of inference: this is the primary justification for introducing the metatheory! Of course,
the writer of the metatheory must be careful not to replace an intractable combinatorial explosion
at the object level with another ono at the meta level. In currently implemented examples of
meta-level inference such an explosion has been avoided. These examples have reduced the
search space by introducing a vocabulary in which abstractions of many object level inferences
relevant to the problems addressed by the metatheory can be concisely expressed.

2. The generality of the meta-level architecture

Meta-level inference as described above can be seen either as a technique - yet another
specialised tool in the practising artisan knowledge engineer's toolkit, and probably an artefact of a
(misguided) decision to use formal logic directly for knowledge representation - or as a
methodology and architecture, implying that it can be used to gain insight into knowledge based
systems in general. In the rest of this paper we exam;ne some existing machine learning
techniques and systems in terms of the architecture, and argue that useful insights do indeed
result.

P 2039

3. Machine Learning within the meta-level architecture

In this section we look firstly at the scope for machine learning within meta-level inference: that
is, where learning techniques can fit. We then look at the need for machine learning; that is, why
machine learning techniques may be appropriate, and what problems of the architecture they can
help with. We cite examples of existing machine learning work as concrete instances of the type
of learning we describe.

3.1 The scope for learning

The division between object and meta levels which the architecture enforces suggests an
obvious way of classifying opportunities for learning by the level at which they learn. We take such
a division as a starting point for describing learning mechanisms which might be appropriate within
this architecture, but as we will see, it is valuable to make more detailed distinctions than simply
object versus meta level.

Learning at the object level only

It is clearly possible to use learning by example methods such as 103 (Quinlan79] and
focussing [Young77] as aids to knowledge acquisition. Such techniques produce classification
rules given a set of examples. To be used within the architecture, these classification rules would
have to be interpreted.by an appropriate metatheory. This need not restrict their applicability, as it
is possible to transform the generated decision tree into a variety of forms by straightforward
logical manipulations.

Learning at the meta-fevel

Various forms of learning can be conceived of to acquire or extend a metatheory. At one
extreme, by treating the logic of the meta-level as a domain in its own right, we can imagine using
the same example-driven techniques as could be used at the object level. Such example-driven
techniques could be used in at least two ways.

Firstly, we might try to learn the definition of one of these meta-level predicates simply by
being given examples and non-examples of object level entities and an indication of whether the
predicate holds for them.

Secondly, we might wish to learn the conditions under which a particular object level proof
step should be taken. We would need examples classified as appropriate and inappropriate
instances of the proof step. Each such example would additionally need, as attributes in ID3
terminology, values for meta-level predicates chosen in advance to describe the object level
sentences, the object level inference rule, and the object-level goal towards which progress is to be
made. In simpler cases the goal might always be the same (e.g. "solve the equation in a small
number of steps*) and the concept of "useful conditions under which to take such a proof step"
would not need to refer to the object-level goal state in its definition.

The correct choice of meta-level attributes is critical to the success of this approach, as is
always the case with example-driven methods. The "modifier" component of Mitchell's earlier LEX
work, described in the first part of [Mitchell84], can be seen as an instance of this example-driven
approach.

Contrasted with the use of example-driven techniques is the use of analytic learning
techniques. When used to learn an improved metatheory, these techniques analyse more closely
the steps of the object level proof which the existing meta-level has induced in the object level.
Such an analysis always requires a representation of the object-level goal state towards which the
proof steps are intended to lead. This can be seen most clearly in Mitchell's later LEX-2 work

P 0

(foreshadowed in [Mitchell82] and partly described in the second part of [Mitchell84]). Silver's LP
(Learning Press) system [Silver85] similarly analyses "worked examples" of equation solving: these
are sequences of object-level proof steps supplied by a benign teacher, which LP generalises to
acquire meta-level knowledge about how to apply similar sequences of object-level rewrite rules in
order to solve similar equations. LP is able to make very useful generalisations from a single
example, by having a great deal of knowledge about the structure of equation solving. It is not
clear to what degree LP has an explicit representation of what it means to be a solved equation,
although we note that IMPRESS [Bundy85] certainly has such a representation.

Two features which distinguish these two forms of learning at the rineta-le'el are:

1 The source of the classification of the object level entities. In the first case distinguished above,
this was done by a "black box" critic which fed all the data to a concept-learning algorithm
which has no knowledge of the use to which the concept it is learning will be put. In the latter
case, an analytic or deductive learning technique is used to perform this classification with
reference to the meta-level specification of the object-level goal state: the concept being
acquired will be used in an implementation of that specification.

2 The metalanguage vocabulary used to describe the object level entities. In the first case
distinguished above, this is again supplied from without. At the other extreme, the learning
component may indeed be creating new terms in this metalanguage.

A more comprehensive treatment of these distinctions appears in [Boswell85].

3.2 The need for learning

Having outlined the possible applications of machine learning techniques within the
architecture, we consider what benefits arise from their use. We see two potential shoftcomings of
the architecture presented so far which machine learning can address. One concerns the
assumption that the subset of object-level queries which are to be answered efficiently is known in
advance, so that a specialised metatheory can be hand-crafted for that subclass. The second
concerns the assumption that adequate problem-solving performance can always be achieved by a
suitably guided series of object level inferences.

Dynamic improvement of a metatheory

In practice, we may be unable or unwilling to predict characteristics of the queries which will
be posed to a given object theory, and so we might provide an initially inefficient metathecry which
in use would be improved by a learning component to optimise performance on the queries which
do occur most frequently. Techniques which could come under this broad heading range from
simple result cacheing, through learning the meta-level properties of the object-level entities most
heavily used in practice, all the way to learning new meta-level concepts and using them to
improve the metatheory.

What if smart control isn't enough?

It may be that the object level theory is so large or badly structured that even cleverly guided
object level inference is too inefficient in practice to perform the required inferences at an
acceptable speed. An extreme and artificial example would be an object level theory consisting
only of the Peano axioms for the natural numbers, which we were attempting to use to find the
prime factorisation of (large) numbers; another one is Kowalski's presentation of "Slowsort"
(Kowalski79]. Faced with this situation, we can adopt one of two strategies, depending on whether
the class of queries to be mo-e efficiently solved can be described in advance.

P 111

We may try to learn a new object theory - meta theory pair with the same input-output
behaviour as the old object theory - meta theory pair. The danger here is if we treat the old
theories as a black box, we lose the soundness property we have claimed fcr the meta-level
architecture, as we will have no justification for the inferences performed in the new theories.
The second-generation expert systems work of Steels and van de Welde (Steels85a. Steels85b]
appears to be an instance of this technique: this work is examined in more detail in the
following section.

Or, we may compile a specialised object - meta theory pair, suitable only for solving the
restricted class of problems which the original metatheory solved, but incorporating the
choices the old metatheory had to make dynamically for each query into a form where the
choices are made in advance. The object theory resulting from such a compilation may need
only a very simple metatheory indeed to interpret it - such as an unaugmented Prolog
interpreter. The KARDIO work of Lavrac, Bratko et al [Lavrac85] can be seen as an instance of
this technique.

4. Relation to Second-Generation Expert Systems

It is interesting to look at the learning component of the work reported in [Steels85a] and
[Steels85b] in the light of the meta-level architecture. The "second generation expert systems"
described are diagnostic expert systems, consisting of not 'only surface heuristic rules relating
symptoms to causes and (trivially) remedies, but also a deep reasoning component which comes
into play when the remedy recommended by the surface rules does not clear the symptom. The
surface rules are not present at all when the system first starts: they are learned as the results of
successful diagnosis in the deep model.

The deep model

The deep model is intended to completely capture the design knowledge concerning the
system to be diagnosed. In the references, the example systems are subsystems of a car. The
design knowledge represented describes the function of the overall system as the functioning of its

'nponent parts. The design knowledge is held in the form of a network such as Figure 1.

Eng , n"e-gtart$ s

ISta,'ter-ri,,, fCable -OKIJ / able-2.-OKJ

Ign, tion-C il=

Del i ver"-Pawar"

I S t "t- Powrdl Isn ii n ol

[8.,,.r ~~"e
ad~

, o .o

P 1.2

We can easily translate this network into a propositional logic form. Each node is a proposition
interpreted as the correct functioning of a component. The directed arcs represent individually
necessary and collectively sufficient conditions for the correct functioning of the component
towards which a set of arcs is directed. For example, the topmost node and its incoming arcs can
be represented as

Engine_Starts <->
StarterTransmissionOK & StarterTurning & Plugl_Fires & Plug2_Fires

& Engine FunctionOK

The Plug1 Fires proposition is further refined as

Plugl_Fires <->
Cablel _OK & IgnitionCoilDeliversPower & Plug 1FunctionOK

Note that in performing this reconstruction, an extra proposition representing the correct
internal functioning of each component has been conjoined with the propositions representing the
incoming arcs. This makes explicit in the object level representation the possibility of component
failure which appears to be buried in the causal network interpreter in the original work.

Problem solving in the deep model is performed by noting "anomalies" - differences between
the desired and actual values of the propositions represented by the nodes - and inferring the
values of propositions to which this "anomalous" proposition is equivalent. The many possible
solutions are pruned by requiring the values given to the propositions to be consistent with other
observed propositions.

In terms of the meta-level architecture, the causal model is a complete object level theory of
the functioning of the car's ignition system. The deep problem-solving strategy is a metatheory
which controls the application such object level rules of inference as:

X <-> A&B&C- X <-> A&B&C
-X and X

-A v -B v -C A & B & C

These are applied in a relatively exhaustive way in order to find a consistent assignment of values
to propositions. In domain terms, these rules respectively justify the reasoning principles stated ast "if the-'effect of a property is anomalous, it may itself be anomalous too" and "if the effect of a

property is normal, then there is reason to believe that it itself is normal", by reading "a property"
as a chosen one of A, B, or C, and "its effect" as X.

The metatheory is augmented with domain-specific "inspection rules" which control where in
the causal network this reasoning starts. It seems that the actual deep reasoning metatheory used
may also distinguish "external controls" and "observable properties" among the propositions which
represent the various components, and implicitly embody such metatheoretic principles as "test
values of observable properties and external controls before attempting to test values of internal
components".

The surface rules

Despite incorporating this metaknowledge, this metatheory is expensive to run and causes the
system to consider many possible component failures. The system therefore further attempts to
learn "shallow heuristic associations between observable symptoms and their probable ultimate
causes'. These heuristic rules summarise a series of inferences in the causal model. and are
known as "solution rules". It is vital to note that the source of candidate surface rules is not only
the deep causal model, but also an indication from the real world of whether the remedial action

_-A

suggested by a diagnosis - whether from the existing shallow rule-set or from the deep model -
succeeded or failed. The 'solution rules" are composed of:

the "primary symptom* - a proposition whose falsehood triggers the use of the solution rule
" secondary symptoms" - propositions which must be true for the rule to be used
* "corrected properties" - propositions whose falsehood is asserted to imply the falsehood of

the primary symptom, and which when made true imply the truth of the primary symptom.

An example pair of solution rules is:

Primary-symptoms: NOT CarStarts
Secondary-symptoms: GasPresent
Corrected-Properties: ParkingMode

Primary-symptoms: NOT Car Starts
Secondary-symptoms: NOT GasPresent
Corrected-Properties: GasPresent

We are told to read these rules respectively as follows:

IF the car doesn't start AND gas is present, THEN put the car in parking mode.
IF the car doesn't start AND there is no gas present, THEN.make gas be present.

It appears to be possible to represent the object level content of these surface rules in a
propositional logic form related to that given for the causal network. One possible translation
schema is

Secondary-Symptoms -> (Corrected-Properties <-> - Primary-Symptoms)

which can be read as "if the secondai symptoms are present, the presence of the primary
symptoms is explained by the absence of the corrected properties, and making the corrected
properties true will make the primary symptoms false", that is, cure the primary symptoms.
Applying this translation schema gives

Gas Present -> (ParkingMode <-> CarStarts
- GasPresent -> (GasPresent <-> Car-Stars

the second of which simplifies to CarStarts -> GasPresent, which can be read as GasPresent
being a necessary condition for Car Starts.

In the absence of any explicit semantics for the "solution rule" syntax, it is possible to try
various other translations of the solution rules. Different translation schemas would sanction
various aspects of the behaviour of the rules and the rule integration procedure which combines
solution rules deemed to be "incompatible'. Translations which deal only with the object level
content of the rules suggest that the shallow rules are an unjustifiable transformation of the deep
model. Such translations, however, obscure the main point of these solution rules, which is to
function as problem-solving heuristics. We argue below that the shallow rules and their interpreter
are in fact encoding, in an obscure way, valuable problem solving knowledge.

What is really being learned?

It appears that this program works as suggested at the end of section 3.2. The metatheory and
object theory are judged to be too inefficient, and so a different theory is constructed which
exhibits some of the same input-output bel-aviour. However, it is not merely the efficiency of the

-A mmmmm

metatheory which is at issue: it may also suggest undesirable actions on the basis of the object
level inferences.

For instance, given only the general inference rule that a device will misfunction if it is faulty
itself or if its enabling conditions are not all true, it might naively suggest that the ignition coil
function be checked - which would involve dismantling part of the engine and testing the coil with
specialised equipment, before checking whether the battery is charged.

Such behaviour can in favourable circumstances be avoided by the surface rules: if a flat
battery is correctly diagnosed as being the cause of an ignition failure on one occasion, they will
suggest this diagnosis alone in future. In the event of a subsequent ignition failure being cured by
replacing the ignition coil, the surface rules might still recommend that the battery charged be
checked before replacing an ignition coil, although the actual order in which the surface rules
would recommend the actions would appear to depend critically on the details of the "rule
integration" procedure.

What is missing, then, from the naive metatheory interpreting only the causal model, is any
notion of the relative cost of tests and the likelihood of individual faults. The overall learning
component is attempting to learn the consequences of this knowledge, in the form of the
surface-level rules. Consistently with our definition of an object level theory, the deep model is
capable only of predicting all possible faults, not the likely ones. This is the knowledge which is
being learned learn from the environment. The learning component of this system, however,
produces as output the solution rules shown above, in which the relative likelihoods and orderings
are hidden in the orderings of these rules and of their conditions.

It is helpful here to bring in Clancey's classification of the types of knowledge a diagnostic
system such as Mycin contains - implicitly or explicitly [Clancey83J. In those terms, we have:

Support knowledge the deep causal model

Strategic knowledge the diagnostic metatheory (interpreter of the causal model).
This metatheory may contain some references to knowledge to
guide the diagnosis, but such knowledge is not sufficiently
available

Structural knowledge the meta-level classification of object level terms. This is the
missing link, which is being learnt from the environment.

To illustrate the above claim, we believe that the diagnostic metatheory needs to be able to
express such principles as:

" suggest COMMON causes before RARE ones
" perform CHEAP tests before EXPENSIVE ones

However, these principles cannot guide the inference in the absence of meta-level clauses such as

commonlyfalse(parkmode).
commonly false(gas.present).
cost of testing(parkmode, 0).
cost-of Jesting(ignition_coil_OK, 1000).

This clearly identifies why the simple exhaustive metatheory fails to produce expert problem
solving behaviour, and suggests we should concentrate on acquiring and explicitly representing
the information the environment makes available. Indeed, having made explicit the knowledge
which is missing, we note that some of it could be explicitly acquired from a practising expert, or
indeed deduced from an even more detailed deep model.

P 115

Another disadvantage of compiling the problem solving ability of the deep model and the
diagnostic metatheory is that the deep model becomes unavailable to support any other tasks. For
instance, the surface rules cannot even in principle answer many of the questions identified in
[Kidd85] as being frequently asked of human experts, such as 'why did that remedy work?", or
Rwill remedy X work?". By encoding he "structural" knowledge in an obscure way, it also
becomes impossible for the system to explain its diagnostic strategy adequately: it cannot say "you
should look for fuel in the tank before taking the fuel pump to pieces because it's easier."

5. Conclusion

We have described an architecture based on meta-level inference and argued that it provides a
sound basis for work in machine learning. Its close relation to formal logic, the best tool available
for describing the manipulation of symbols and ascribing meaning to those manipulations, makes it
more clear exactly what is being learnt. The explicit representation of control knowledge enforced
by the architecture is particularly valuable when control is being learned, and is greatly preferable
to encoding such knowledge implicitly in the order and structure of arbitrary symbol-structures
whose semantics are unclear. We have illustrated this point by looking in some detail at the work
of Steels et al. We claim that a reconstruction of that system within the meta-level architecture is
feasible and desirable. Such a reconstruction would exhibit equivalent behaviour and give a more
satisfactory account of it.

Acknowledgements

Many of my colleagues at HPLabs Bristol have contributed to the ideas presented in this paper.
I am particularly indebted to Bill Sharpe for introducing me to the technique of neta-level
infeience, and to John Lumley, Martin Merry, and Bob v'elham for commenting critically on a draft
of this paper at very short notice. The formulaic nature of the traditional disclaimer that all
remaining errors and shortcomings are my own responsibility in no way reduces its truth. Finally, I
gratefully acknowledge the support of Hewlett-Packard in providing the time and facilities for
producing this paper.

References

[Boswell85]
Boswell, R. An Analytic Survey of Analytic Concept-Learning, Edinburgh University Dept. of Al
WNorking Paper no. 181.

[Bundy79)
Bundy, A., et al. "Solving Mechanics Problems using Meta-Level Inference", in IJCAI-79,
pp.1017-1027.

[Bundy85]
Bundy, A., & Sterling, L., "Meta-Level Inference in Algebra'. Available as Edinburgh University
Dept. of Al Research Paper no. 273, 1985; to appear in Proceedings of the Capri-85 conference
on Al, North-Holland.

[Clancey83]
Clancey, W.J., "The Epistemology of a Rule-Based Expert System - a Framework for
Explanation", Artificial Intelligence 20, North-Holland, 1983, pp. 215-251

[Kidd85]
Kidd. A.L., "What do Users Ask? - Some Thoughts on Diagnostic Advice", Proceedings of the
Fifth Technical Conference of the British Computer Society Spec,alist Group on Expert Systems,
Merry M. (ed.), Cambridge University Press, 198!, pp. 9-19

[Kowalski79]
Kowalski R., Logic for problem solving, Elsevier, New York, 1979, pp. 125-127

1-

(Lavrac85]
Lavrac, N., Bratko. I., Mozetic, I., et. al. 'KARDIO.E - an expert system for e'ectrocardiocralohic
diagnosis of cardiac arrriythmias', Ex;pert Syrerms, 2, 1 (January 1 985), LeZrned infcrm"ation.
Oxforf, England

[McCarthy69]
0 ~McCarthy, J., & Hayes. P., "Some Philosophical Problems from the sta7=cint of Arrificial

Intelligence', Machine Intelligence 4. Metzler B. & Michie D. (eds.), Edinburc7 University Press.
1969. pp. 463-502. Reprinted in Readings in Artifictal Intelligence, Webber 2S.1.. & Nilsson N.
(eds.), Tioga Publishing Co., Palo Alto. 1981

[Mitchell82l
Mitchell, T.M., "Toward Combining Empirical and Analytic Meilhods for Learning Heuristics,"
Human and Artificial int'elligence, Elithorn, A. & Sanerji, R. (eds.), Erlbaum, 1982.

[M ,itchell84]
Mitchell. T.M., Utgotf. P.E., Banerji, R., 'Learning by Experimentation: Acquir"ng and Refining
problem-solving heuristics", Machine Learning: an Al Approach, Michalski, Carbonell, & Mitchell
(eds.), Springer-Verlag. Bertin, 1984. pp. 163-190

[Quinian7g]
Quinlan, J.R., "Discovering rules by induction from large collections of exa,-,.les , Expert
Systems in the Micro -Electronic Age, Michie D. (ed.), Edinburgh University P'ess, 1979, po.
168-201

jSilver85]
Silver, B. Precondition Analysis: Learnirg Control Information. EDAI Researcn aper nr. 220,
Dept. of A.l., Edinburgh University, 1985.

(Steels85a]
Steels, L., & van de Welde, W., "Learning in Seccnd Generation Expert Systems', in
Knowledge-Based Prooiem Solving. Kowalik J. (ed.), Prentice-Hall, New Jersey. 1985

[Steels85b]
Steels, L.. "Second Generation Expert Systems .Fuiture Generation Compute., Systems I t4).
1985, pp.213-221

('Young77]
Young, R., Plotkin. G.D., & Linz, R.F., Analysis of an extended concept-learning task', in,
IJCAI-77, p.285

7 217

Learning Fault Diagnosis Heuristics from Device Descriptions

Michael J. Pazzani
The Aerospace Corporation

P.O.Box 92957
Los Angeles, CA 90009

Introductiorl

This paper describes an approach to learning efficient heuristics for diagnosing faults in complex

systems. This technique is applicable to the learning heuristics for the identification of failures of
components of large systems whose status is monitored for unusual or atypical features, such as a power
plant or a satellite. When one or more atypical features are detected, a diagnosis process seeks to find
an explanation for the atypical features. This explanation typically involves isolating the cause of the
atypical features to the failure of a component. Occasionly, the explanation may be that system is in a

normal but unusual mode1 . The focus of our investigation is the attitude control system of the DSCS-111
satellite. 2 The system is implemented in a combination of LISP and PROLOG.

Two different approaches have been used for fault diagnosis. In one approach [3, 7. 20], the observed
functionality of devices are compared to their predicted functionality which is specified by a quantitative or

qualitative model of the device (4, 8, 6]. For a large system whose status is changing rapidly, comparing
observed to predicted functionality can be costly. The alternative approach [23, 16, 26] encodes
empirical associations between unusual behavior and faulty components as heuristic rufes. This

approach requires extensive debugging of the knowledge base to identify the precise cond!lions which
indicate a particular fault is present. In previous work, [17, 18] we have described the Attitude Control
Expert System (ACES) in which these two approaches are integrated. Heuristics examine the atypical
features and hypothesize potential faults. Device models confirm or deny hypothesized faults. Thus,
heuristics focus diagnosis by determining which device in a large system might be at fault. Device
models determine if that device is indeed responsible for the atypical features.

In this paper, we address the problem of revising the fault diagnosis heuristics when they hypothesize a

fault which is later denied. This occurs when all of the possible exceptions to a heuristic are not explicitly

stated. When a fault is proposed, and later denied by device models, the reasons for this hypothesis
failure are noted and the heuristic which suggested the fault is revised so that the hypothesis will not be
proposed in future similar cases. This is a kind of failure-driven learning [21] which enables a diagnostic
expert system to start with heuristics which indicate some of the signs (or symptoms) of a failure. As the
expert system solves problems, the heuristics are revised to determine what part of the device model
should be consulted to distinguish one fault from another fault with similar features. There are several
reasons why this approach is desirable:

= Device models are a natural way of expressing the functionality of a component. However,
they are not the most natural or efficient representation for diagnosis [22].

" Determining some of the signs of a fault (i.e., the initial diagnostic heuristics) is a relatively

'lt is often the case that dw monitor is designed to have a tolerable number of 'alse alarms, rather than miss an actual failure

2the attitude control system is responsible for detecting and corecting deviations from the desired orientation of Uw satellite

easy task. For example, ACES starts with a heuristic which states that if a tachometer is
reading 0, then it is faulty. Later this heuristic is revised to include conditions to distinguish a
fault in a tachometer from a fault in the component measured by the tachometer.

The following example illustrates failure driven learning of diagnosis heuristics. I once noticed that the
left taillight of my car was not working. I knew of two reasons that a taillight could be out which might be

expressed as the following two heuistics in an expert system:

IF a taillight is not working
THEN the fuse of the taillight's circuit is blown.

IF a taillight is not working,
THEN the bulb of the taillight is burnt out.

I was able to rule out a blown fuse. If the fuse were blown, then all of the lights on the same fuse

would be out. Consulting my owner's manual, I discovered that the right front parking light would also be
out if the fuse were blown. The first fault diagnosis heuristic could be modified to prevent considering this
hypothesis in the future:

IF a taillight is not working
MD the opposite front parking light is not working
THEN the fuse of the taillight's circuit is blown.

One way to view this type of learning s as an extension of dependency-directed backtracking [24]. In
dependency-directed backtracking, when a hypothesis failure occurs, the search tree of the current
problem is pruned by removing those states which would lead to failure for the same reason. In failure-

driven learning, the reason for hypothesis failure is recorded, so that the search tree of future similar
problems does not include states which would lead to failure for the same reason.

In the remainder of this paper, we first discuss some related work in machine learning on improving
performance with experience. Next, we describe our approach to learning efficient diagnosis heuristics.
Finally, we present an example of the approach applied to the attitude control system of DSCS-II.

Previous Work

Ri-Soar
Ri-Soar[19] is an attempt to duplicate the performance of Ri [10], an expert system that configures

computers, by learning configuration strategies. R1-Soar utilizes a learning mechanism called chunking
as implemented in Soar (9]. Ri-Soar starts with an initial base representation which indicates the goal to
be achieved and operators that can be used to achieve the goal state. In Soar, all basic operations are
represented as subgoals. For example, subgoals will be spawned to seiect among applicable operators,

to test if a goal has been achieved, and to find the result of applying an operator to a state. With the base
representation and subgoaling strategy, Ri-Soar can search for the sotuLion to any configuration problem

but this search may be expensive. In Soar, efficiency is achieved by rules which guide the search. These

rules are automatically acquired by creating chunks of knowledge implicit in the base representation.

Chunking is a technique for recording the solution of a subgoal so that the chunk can substitute for the
subgoal processing the next time the same subgoal is encountered. For example, chunking a goal to

select among operators will result in a chunk which selects the proper operator in that state. Chunking is

accomplished by creating a new rule. The test of the rule is found by noting what facts were accessed to

solve the subgoal. The action of the rule is computed by noting what facts were added to memory during
the processing of the subgoal which are needed by the parent goal.

R1-Soar presents an interesting approach to learning which we share. Expert systems can be viewed

as knowledge-intensive programs, as opposed to domain independent general purpose problem solving
programs. Much work is required to build and debug the knowledge base of an expert system. In
contrast, less effort is required to define the general knowledge needed by a problem solver, but the
general problem solver is bound to be more inefficient since it must search for a solution. A primary
difference between Rl-Soar and our work is the mechanism that creates a knowledge-intensive expert
system from a general problem solver. Ri-Soar uses a general technique which records the solution to

every subgoal. One question unanswered by R1-Soar is when learning is beneficial. Clearly, it is not
valuable to remember that on March 4, 1984 at 10:35 the momentum was within normal bounds. Even
though it may take 50 primitive operations to recalculate this fact, it is not worth learning since it will not

be used again. Our more specific approach only learns one thing: how to avoid making the same
mistake. An additional problem with Soar is that it can over-generalize. For example, Ri-Soar learned

that a module could not be put in any backplane, where it should have learned that the module could not
be put in a particular backplane. Oer-generalization is a serious problem which must be addressed

before Soar can be used in a practical application.

Failure-driven Learning
Schank [21] has proposed failure-driven learning as the mechanism by which a person's memory of

events and generalized events evolves wih experience. A person's memory provides expectations for

understanding natural language understanding and inferring other's plans and goals. When a new

experience fails to conform to these expectations, it is stored in memory along with the explanation for the
failure to prevent the generation to the erroneous expectation in the future. In Schank's theory, the
reason for the expectation failure can be a Motivational Explanation (i.e., an actor is pursuing a different

goal than inferred) or an Error Explanation (i.e., an actor was not able to accomplish his goal which was
inferred correcty). The correction to memory so that the failure does not occur again is to remember the
event causing the failure indexed by the explanation for the failure. In future similar situations, this event
will be the source of expectations rather than the generalized event whose expectations were incorrect.
In failure-driven learning as applied to fault diagnosis, the failures are of fault hypotheses as opposed to

expectations. The. reason for failure is identified as some aspect of the device's function which disagrees
with the fault hypothesis. The correction is to modify the heuristic rule which proposed the incorrect
hypothesis to check that aspect of the device before proposing the fault.

Explanation-based Learning
Failure-driven learning dictates two important facets of learning: when to learn (when a hypothesis

failure occurs) and what to learn (features which distinguish a fault in one component from faults in other

components). What is not specified is how to learn. For example, a learning system could learn to

distinguish a faulty tachometer from failures with similar features by correlation over a number of

examples (e.g. [11, 13, 25]). Device models (or a teacher) could classify a large number of examples as

positive or negative examples of broken tachometers. For example, the heuristic which suggests broken
tachometers could be revised to include a description of those combination of features which are present
in a number of examples when a tachometer is faulty, but not present when the tachometer is working
property.

In contrast, ACES learns how to avoid a hypothesis failure after just one example. The conditions

which need to be tested to avoid a hypothesis failure are exactly those features of the one example which

were needed by the device models to deny the hypothesis. The device models serve a dual role here.
First, they identify when to learn by denying a hypothesis. More importantly, they provide an explanation

for the hypothesis failure. The device models indicate which features would have been needed to be
present (or absent) to confirm the hypothesis. This deductive approach to learning is called
explanation-based learning [5, 12, 14. Explanation-based learning improves the performance of ACES
by creating fault diagnosis heuristics which explicate information implicit in the device models.

Failure Driven Learning of Fault Diagnosis Heuristics

In this section, we describe our approach to learning fault diagnosis heuristics by finding symptoms of

faults implicit in device models. First, let us clarify what we mean by a device model. Following

Chandraskaran [221, we represent the following aspects of a device:

" Structure: Specifies the connectivity of a device.

" Functionality: Specifies the output of a device as a function of its inputs (and possibly state
information).

It is not important to the expert system or the learning module that the functionality be expressed
quantitatively or qualitatively. The important part is that given the observed inputs of a device, the device
model can make a prediction about the output. The predicted value of the output be compared to the
observed value or can be treated as an input to another device.

Reasons for Hypothesis Failure
We have identified three different reasons for failing to confirm a hypothesis. For each reason we have

.mplemented a correction strategy.

o Hypothesized Fault- Inconsistent Prediction: The hypothesized failure is inconsistent
with observed behavior of the system. The strategy for correction is to c'eck for other
features which the proposed fault might cause. The hypothesis failure in the example of the
taillight discussed earlier is of this type.

*Hypothesized Unusual Mode- Enablement Violated: The atypical features can be
explained by the system being in a normal but unusual mode. However, the enabling
conditions for that mode are not met. For example, once the EGR (Exhaust Gas
Recirculation) warning light on my car went on indicating that the emission system needs
servicing. In an expert system this might be expressed:

IF the EGR light is on
THEN the emission control system needs service

When I read owner's manual for my car, I found that the light goes on every 25,000 miles.
Since the car had around 13,000 miles on it, the emission control system didn't need service
(although the light did).

The strategy for correcting the heuristic which proposed the faulty hypothesis is simply to
consider one of the enabling conditions of the unusual state. In general, there may be
several conditions which define such an unusual state. Only those conditions which would
be true if the system were in an atypical mode but are not true in the current example are
used to revise the fault diagnosLs heuristic. The above rule would be changed by this
strategy:

IF the EGR light is on
AND the odometer is near a multiple of 25,000
THEN the eamission control system needs service

--A ~ m

Hypothesized Fault- Unusual Input: The device hypothesized to be faulty is in fact
functioning properly. This typically occurs when the input to a device is very unusual. In this
case, the output of the device may also be unusual and the device might be assumed to be
faulty unless the input is considered. For example, when I was a young child living in New
Jersey, my television stopped working; only static appeared on all of the stations. I tried to
fix it by adjusting the fine tuning knob and finally asked my mother for help. My mother
assumed that I had broken the tuner by twisting it so much. Apparently, she has a heuristic
which might be expressed:

IF there is static on all stations
THEN the tuner is broken

Several hours later, she discovered that there was a power failure in New York and none of
the television stations were broadcasting. The problem with this heuristic is that it doesn't
consider that the input to the television might be at fault. Revising the above rule to account
for the input relationship would result in the following:

IF there is static on all stations
AND the stations are broadcasting
THEN the the tuner is broken

Whenever a hypothesis is denied by consulting a device model, the reason for the denial must be
found to avoid the failure in future similar cases. We have identified these three sources of hypothesis
failure and use a different correction strategy for each failure.

Revising Fault Diagnosis Heuristics
When there is a hypothesis failure, the explanation for the failure is found and the heuristic rule which

proposed the hypothesis is revised. A heuristic rule which proposes a fault can apply to one particular

component (e.g., the light bulb of the left taillight) or a class of components (e.g., light bulbs). Similarly,
the correction strategy can apply to a particular component or a class of components. The manner in
which the knowledge base of heuristic rules is revised depends on the generality of the heuristic rule and

correction. These interact in the following manner:

* Heuristic rule not more general than the correction: The correction is added to the
heuristic rule and this new more specialized rule replaces the old rule.

• Heuristic rule more general than the correction: The correction is added to the heuristic
rule and applted only in the specialized case. The old rule is retained for use in other cases.

Consider-the case of the taillight discussed earlier. This example assumed that the explanation for
ruling out the fuse was expressible as if the fuse for a taillight is blown, then the front parking light on the
opposite side will be out. Since the rule and the revision both applied to any taillight (i.e., same level of
generality), the rule is replaced by the revised version. On the other hand, if the explanation were
expressed as *If the fuse for a left taillight is blown, then the right front parking light will be out', then the
new rule could not replace the previous rule:

IF a left taillight is not working
AND the right front parking light is not working
THEN the fuse of the taillight's circuit is blown.

In a similar manner, if the original fault diagnosis heuristic were expressed more generally, about car
lights in general instead of about taillights, then it would need to be specialized about taillights but remain
to diagnose problems with other lights. The knowledge base would then need to contain the following two

rules:

P 122

IF a taillight is not working
AND the opposite front parking light is not working
THEN the fuse of the taillight's circuit is blown.

IF a light is not working

THEN the fuse of the light's circuit is blown.

There are two other issues to be considered in revising heuristic rules. First, since some testing s
being added to hypothesis generation, it would be wasteful to repeat the same test during confirmatic-
To avoid this potential problem, the revision to a rule caches the results of a test. Second, the amount :
search necessary to prove a conjunction of subgoals in PROLOG (the language we use to implement c -
rules) is dependent on the order in which the subgoals are attempted. We use a strategy to order :---
tests in a revised rule similar to one proposed by Naish [15]. This strategy minimizes the size of t---
search space by detecting the ultimate failure of a rule as soon as possible. This assumes tr'-
decreasing the search space is the best means of increasing performance. This is true in our applicatvi
since testing for the presence or absence of any feature is equally expensive. Cantone [1] gives a-i
approach for ordering tests based in part on the cost of the test.

A Definition of Failure-driven Learning of Fault Diagnosis Heuristics
More formally, a diagnosis heuristic can viewed as the implication:

F and consistent(H) -+ H
where F is a set of features, H is a hypothesis, and consistent(H) is true it believing H does not resul -
a con tradiction.3 In our approach to learning and fault diagnosis, consistent(H) corresponds
confirming a hypothesis with device models. Confirmation can be viewed as the following implications

H- C1
H -C

2

If F is true, but consistent(H) is false because not(C) is true, then the diagnosis heuristic can revise!
to:

F and C1 and consistent(H) --, H

In some cases, checking the consistency of a hypothesis with the device models is more prope-,
viewed as the following implication:

B and H -+ C,
The situation when B is true and C, is false and corresponds to the case that the revised heuristic is use-d
in addition to the old heuristic. The form of the revised heuristic in this case is:

F and C and B and consistent(H) -4 H

The point of failure-driven learning of diagnosis heuristics is that it is simpler to rule out a hypothesis L-y
testing for C than proving consistent(H).

See 121, for a d'eos.caoi of "aonsstent.

Failure-driven Learning of Diagnosis Heuristics

In this section, we describe an example of how the performance of the expert system to diagnose faults
in the attitude control system is increased through failure-driven learning. To follow this example, it is
necessary to know a little about attitude control.

Attitude Control
The attitude control system consists of a number of sensors which calculate the saterlite's orientation

on the three axes (called yaw, pitch and roll) by detecting the location of the earth and the sun and a set
of reaction wheels which can change the satellite orientation if it deviates from the desired orientation
There are four reaction wheels (PY+, PY-, PR+, and PR-), arranged on the four sides of a pyramid (see
Figure 1). Pitch momentum is stored as the sum of all four wheel speeds; roll momentum is stored as the
difference between the PR+ and PR- speeds; and yaw momentum is stored as the difference between
the PY+ and PY- speeds.

P1. ~ Pr f axi

*roll

Figure 1: The reaction wheels

A diagram of the attitude control system appears in Figure 2. The signals YATT, RATT, and PATT
represent the attitude on the yaw, roll and pitch axes respectively. The wheel drive signal processing
component issues drive signals to the motor of the reaction wheels to change the wheel speeds. The
wheel drive signals are WDPY+, WDPY-, WDPR+ and WDPR- for the PY+, PY-, PR+ and PR- wheels
respectively. The wheel speeds are measured by tachometers yielding the signals WSPY+, WSPY-,
WSPR+ and WSPR- for the PY+, PY-, PR+ and PR- wheels respectively. The tachometer signal
processing module converts the four wheel speeds to the three valuer representing the equivalent wheel
speeds on the yaw, roll, and pitch axes. These equivalent wheel speeds are also combined with the
attitude information from the sensors to yield the estimated attitudes (YATT, RATT, and PAT).

The attitude control system contains the logic necessary to maintain the desired attitude. For example,
to compensate for a disturbance on the roll axis, the difference between the speed of PR+ and PR-
wheels must change.

P 124

Tachot ee Tachometer

R o ll RA T D rive

,,in Signal PR

y"• Tachometer i
A..A Signal

puss Processing
uIPY+

Figure 2: Block diagram of the attitude control system

ACES: The Attitude Control Expert System
One reason that our particular satellite was chosen for this research is that The Aerospace Corporation

possesses a simulator for the attitude control system which generates telemetry tapes reflecting faulty
behaviors to aid engineers in faults diagnosis. In addition, these tapes serve as input to our expert
system. ACES consists of two major modules:

" Monitor. This module converts the raw telemetry data to a set of features which describe the
atypical aspects of the telemetry. In ACES, the features detected include:

" (value-violation signal start-time end-time value): Between start-time and end-time the
average value of signal has taken on an illegal value.

" (jump signal start-time end-time amount start-value end-value slope): The signal has
changed from start-value to end-value between start-time and end-time. Amount is the
difference between start-value and end-value and slope is amount divided by the
difference between start-time and end-time.

" Diagnostician. This module finds an explanation for the atypical features.

In this article, we focus on the learning in the diagnostician. The diagnostician which is illustrated in
Figure 3 is comprised of several cooperating modules:

* Fault Identification. The atypical features are used as symptoms of faults by heuristic rules to
postulate a hypothesis which could account for the behavior of the satellite. Typically, the
hypothesis isolates the atypical behavior to a failure of a single component.

P 225

" Fault Confirmation. This step compares the actual device functionality to the functionally as
specified by a device model This process either can confirm or deny that a hypothezszed
fault is present. If a hypothesis is denied, an attempt is made to identify another fault.

" Faut Implication Analysis. After a fault has been confirmed, the effect of the fault o, the
values of other telemetry signals is assessed. A model of the attitude control system predicts
the values of telemetry signals which might be affected by the fault. The predicted telemetry
values are analyzed by the monitor to see if they are atypical. Descriptions of atypical
predicted values are then compared against the set of atypical features to explain any
features which are a result of a confirmed fault.

Features

Figure 3: Block~ diagram of the Attitude Control Expert System
Refining Fault Diagnosis Heuristics

For this example, the initial fault diagnosis heuristics are quite simple. Figure 4 presents the definition
of two fault diagnosis rules. These PROLOG rules have a LISP-like syntax since our PROLOG is

implemented in LISP. The first element of a list is the predicate name. Variables are preceded by "?.
The part of the rule preceded by :-" is a fault hypothesis, and the part of the rule after ":- are those

conditions which are necessary to be proved to propose the hypothesis. These rules implement two very
crude heuristics: "if the speed of a reaction wheel is 0, then the tachometer is broken" and "if the speed
of a reaction wheel is 0, then the wheel drive is broken.

Since ACES is implemented in PROLOG, it tries the heuristic rules in the order that they are defined.
However, for the purposes of learning, we find it more convenient to have the ordering of the rules
undefined.' This prevents one heuristic from relying on the fact that another fault proposed by an earlier

'This is mfpeme ruley randomy c ' sa g f al orde h of the rles before each run
coniton wic ae ncesay o e rovd o roos te ypoheis Tes rlesimleen to er

1: (problem (problem wheel-tach ?from
(broken-wheel-tach ?wheel ?from)))

;there is a tachometer stuck at 0
(feature(value-violation ?sig ?from ?until 0))
(measurement ?sig ?wheel speed ?tach)
(isa ?wheel reaction-wheel)
;if the speed of a wheel is 0

2: (problem (problem wheel-drive ?from
(broken-wheel-drive ?wheel ?from ?sig)))

;there is a wheel drive motor not responding to the drive signal
(feature(value-violation ?sig ?from ?until 0))
(measurement ?sig ?wheel speed ?tach)
(isa ?wheel reaction-wheel)
;if the speed of a wheel is 0

Figure 4: Initial Fault Diagnosis Heuristics

heuristic has been ruled out.

An example will help to illustrate some of the strategies for revising fault diagnosis heuristics. Figure 5

contains the relevant telemetry data. For this telemetry tape, the monitor notices several atypical

features:

1. WSPR-, WSPR+. WSPY+ and WSPY- have changed an unusual amount.

2. WSPR+ and WSPR- are.0.

-50.0 -I
-2e.0-.. -

-150.0-

-25a.0
-300.0
-35a.0

I I I I i

0:06:08 0:07:00 0:08:00 e:09:00 0:10:00 0:11:00 0:12:00 0:13:eO 0:14:00
ASPY- in CiTS WSPR* in CiTS ------------
ASPY in CTS WSPR- in CTS-------

3.0 -.
-40.0
-50
-60
-80 a-9 0-i iLm

-90.0

0:06:09 9:97:00 0:08:09 8:9:00 0:10:00 0:11:00 0:12:00 0:13:e0 0:14:00
inPR- in CNTS
.i3PR#. in CnTS-------

Figure 5: Telemetry data after a broken wheel drive

The first hypothesis proposed by the first rule in Figure 4 is ,hat the tachometer of the PR- wheel is

P 127

stuck at 0. The confirmation module denies this hypothesis for the following reason: if the tachometer
were stuck at 0, the attitude of the satellite would change drastically.5 Sin:e the attitude did not change,
the heuristic must be revised to avoid the generation of this hypothesis in future similar cases. The
hypothesis failure is caused by not checking the implications of a faulty tachometer (Hypothesized Fault-
Inconsistent Prediction). Checking any of the attitude signals would suffice to distinguish a faulty
tachometer from the actual fault. In Figure 6, the revision tests YATT.

(problem (problem wheel-tach ?from
(broken-wheel-tach ?wheel ?from)))

(FEATUR (VALUE-VIOLATION YATT ?FROM-32 ?7L'-33 WVIL-34))

;KM~ SURE TM YAW ATTITUDE HAS 8EEN DIS-.=D
(feature-(value-violation ?sig ?from ?until 0))
(AFTERa ?WROM-32 ?FROM)
;MK SUE THE ATTITUDE DISTURRANCI IS AFTER THE VALUE VIOLATION
(measurement ?sig ?wheel speed ?tach)
(isa ?wheel reaction-wheel)
(CACHc-PAO~vED ATT ITVDE-DISW.3AWCE)

Figure 6: Revised Faulty Tachometer Heuristic- changes in SMALL CAPITALS

After the heuristic has been revised, diagnosis continues. The next hypothesis proposed by the
second rule in Figure 4 is that the wheel drive of the PR- is broken. The device model of a wheel drive
includes the following information: the wheel speed is proportional to the integral of the wheel drive
signal. If the wheel drive signal is positive the wheel speed should increase.

During the time that WSPR- increased from -100 to 0, WDPR- was positive (see figure 5)_ Therefore,
the PR- wheel was not ignoring its drive signal and the hypothesis is denied. The hypothesis failure is
caused by the fact that WSPR- wheel is indeed doing something very unusual by changing so rapidly and
stopping. However, it is doing this because it is responding to WDPR-. The heuristic which proposed this
fault is revised to consider the functionality of the device (Hypothesized Fault- Unusual Input).

In Figure 7, the revised heuristic checks that change of the wheel speed as it approaches 0 is not due
to the drive signal. Since our heuristic rules and our device models are implemented in the same
language. it is possible to move code from the device model to a heuristic rule by renaming variables. In
other systems, this may not be possible. However, this strategy would still apply if the rule could be
revised to indicate what part of the device model to check for (e.g., test that the observed wheel speed
could not be produced given the wheel drive between time and time 2). In ACES, it is possible to revise
the rule to specify how the test should be performed instead of what test should be perfortmd.

After the heuristic has been revised, another hypothesis is found to account for the atyp a features:
the faulty wheel drive heuristic proposes that the PR+ drive is ignoring its input since WSPR+ is 0, and
when it increased to 0, WDPR+ was negative indicating that the speed should decrease (see Figure 5).
The confirmation of this hypothesis is trivial since the heuristic already proved that the drive was not
functioning according to its device description. After the fault is confirmed, the effects on the rest of the
attitude control system are assessed. Since roll momentum is stored as the difference between the
speed of the PR+ and PR- reaction wheels, when WSPR+ goes to 0, WSPR- should change by the same

5The attitude cntrol system would beieve that the wheel was not storing any momentum when in fact it is. To compensate for
the erroneous report of loss of momentum, tie attitude control system would adjust the nomenturn of the other wheels, changing
the atiJde of fte Utellitw

F

2 :29

(problem (problem wheel-drive ?from
(broken-wheel-drive ?wheel ?from ?sig)))

(FZAETRZ(JMQ ?SIG ?FROM-37 ?UNTZL-38 ?JM4-39 ?START-40
?END-41 ?SLOPZ-42))

:T.R IS A CHANGE IN TU WHEEL SPEED
(feature(value-violation ?sig ?from ?until 0))
(AFTER ?FROM ?FROM-37)

;THE WHEEL SPEED REACHES 0 AFTER IT CaXNGES
(measurement ?sig ?wheel speed ?tach)
(isa ?wheei reaction-wheel)
(DRI'VES ?DRIVZ-43 'WHEEL)
(MEAS3RENENT ?DRIVE-SIGNAL-44 ?DRIVE-43 AWLITUDE DIRECT)

;FIND THE WHEEL DRIVE SIGNAL OF THE ?WHEEL

(IS ?DRIVE-SIGNAL-SIGN-45
(TELMETRY-SIGNAL-SIGN ?DRIVE-SIGNAL-44 ?FROM-37 ?UNTIL-38))

;FIND THE SIGN OF THE THE DRIVE SIGNAL DURING THE JtW
(IS ?SLOPE-SIGN-46 (RZPORT-SIGN ?SLOPE-42))

;FIND TIE SIGN OF JUMP
(NOT (AGREE ?SLOPE-SIGN-46 ?DRIVE-SIGNAL-SIGN-45))
;MAKI SURE THI DIRECTION OF TEE J4V DISAGREES WITH THE DRIVE-SIGNAL.

(CACHE-DISPROVED WHEE-DR'VZ-STATS)

Figure 7: Revised Wheel Drive Heuristic- changes in SMALL CAPITALS

amount. The satellite was in a very unusual state prior to the failure: WSPR+ and WSPR- were equal.
When the PR+ drive broke, WSPR- went to 0 to compensate for the change in WSPR+. In addition, since
the pitch momentum is stored as the sum of.all four wheels, to maintain pitch momentum WSPY+ and
WSPY- decreased by the amount that WSPR+ and WSPR- increased. While WSPY+ and WSPY-
decreased, the difference between them remained constant to maintain the yaw momentum. The broken
PR+ wheel drive accounts for the atypical features and the diagnosis process terminates.

Results
There are two standards for evaluating the effects of learning in ACES. First, there is the performance

of ACES using the rules in Figure 4. We call this version naive-ACES. Additionally, there is the
performance of ACES using rules hand-coded from information provided by an expert. We call this
version of the system expert-ACES. The performance of the naive-ACES after learning is compared to
naive-ACES and expert-ACES in Figure 8 and Figure 9. There are four test cases which are used for
comparison:

.1 A tachometer stuck at 0.

2. A wheel drive ignoring its input when the opposite wheel is at the same speed. Data from
tns example is in Figure 5.

3. A wheel unload (i.e., the speed of the reaction wheels is changed by the firing of a thruster).
This is not actually a failure, but it changes the wheels speeds and momentum so that the
monitor detects atypical features.

4. A wheel drive ignoring its input in the usual case where the opposite wheel is at a different
speed.

The data in Figure 8 demonstrate that the failure driven learning technique presented in this paper
improves the simple fault diagnosis heuristics to the extent that the performance of ACES using the
learned heuristics is comparable to the system using the rules provided by an expert. In one case, the
performance of the learned rules is even better than the expert provided rules. This particular case is the

previous example in which a wheel drive broke when the satellite was in an unusual state. The heurs',ic
provided by the expert did not anticipate the rare condition that two opposing wheel speeds were e-ua'

CASE fault naive-ACES naive-ACES expert-ACES
after learning

1 tachometer 21 1 1
2 wheel drive 4 1 2
3 wheel unload 1 1 1
4 wheel drive 2 1 1

Figure 8: Number of Fault Hypotheses

The data in Figure 9 reveal that the number of logical inferences required by the expert sys:em
decreases after learning. This demonstrates that after learning, the expert system is doing less work to

l identify a failure rather than moving the same amount of work from hypothesis confirmation to hypothesis
generation. Comparing the number of inferences required by naive-ACES after learning to those of
expert-ACES is not actually fair since it appears that the expert's rules at times test some informa:ion
retested by the confirmation process. Recall that retesting is avoided by a revised rule since the revision
contains information to cache the results of consulting a device model. It has been our experience that
this cache reduces the number of inferences by approximately ten percent. An additional ten percent of
the inferences are saved through intelligent ordering of clauses of revised rules compared to our in::,al
simple approach of appending the revision to the end of a rule.

CASE fault naive-ACES naive-ACES expert-ACES
after learning

1 tachometer 2268 211 584
2 wheel drive 1238 616 910
3 wheel unload 870 861 947
4 wheel drive 745 409 643

Figure 9: Number of Inferences to Generate and Confirm Fault

Conclusion
We have presented an approach to refining fault diagnosis heuristics by determining what aspect of a

device model must be consulted to distinguish one fault from another fault with similar features. This
approach relies on explaining why a heuristic does not apply in a certain case and correcting the heuristic
to avoid proposing an erroneous fault hypothesis. Applying this technique to a simplevtrsion of the
ACES expert system for the diagnosis of faults in the attitude control system yieldR Oerformance
comparable to and in some cases better than the performance of ACES with expert fault diagnosis
heuristics.

Acknowledgements

Comments by Anne Brindle. Jack Hodges, Steve Margolis, Rod McGuire and Hilarie Orman helped
clarify this article. This research was supported by the U.S. Air Force Space Division under contract
F04701-85-C-0086 and by the Aerospace Sponsored Research Program.

References

[1] Cantone, R., Pipitone, F., Lander, W., & Marrone, M. Model-based Probabilistic Reasoning for
Electronics Troubleshooting. In Proceedings of the Eigth International Joint Conference on Artificial
Inte;egence, pages 207-211. IJCAI, Vancouver, August, 1983.

[2] Charniak, E., Riesbeck, C. and McDermott, D. Artificial Intelligence Programming. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1980.

[3] Davis, R., Shrobe, H., et al. Diagnosis Based on Description of Structure and Function. In
Proceedings of the National Conference on Artificial Intelligence. American Association for Artificial
Intelligence, Pittsburgh, PA, 1982.

[4] de Kleer, J. & Brown, J. A Qualitative Physics Based on Confluences. Artificial Intelligence 24(1),
1984.

[5] DeJong, G. Acquiring Schemata Through Understanding and Generalizing Plans. In
Proceedings of the Eighth International Joint Conference on Artificial Intelligence. Karlsruhe, West
Germany, 1983.

,6[Forbus, K. Qualitative Process Theory. Artificial Intelligence 24(1), 1984.

[7] Genesereth, M., Bennett, J.S., Hollander, C.R. DART: Expert Systems for Automated Computer
Fault Diagnosis. In Proceedings of the Annual Conference. Association for Computing Machinery,
Ba,,nore, MD_, 1981.
:8] Kuipers, B. Commonsense Reasoning about Causality: Deriving Behavior from Stricture.
Ar, "cal Intelligence 24(1). 1984.

,9] Laird, J., Rosenbloom, P., and Newell, A. Towards Chunking as a General Learning Mechanism.
;n Proceedings of the National Conference on Artificial Intelligence. American Association for Artificial
inteiTigence, Austin, Texas, 1984.

[10] McDermott J. Ri: a Rule-Based Configurer of Computer Systems. Artificial Intelligence 19(3),
1982.

[11] Michie, D. Inductive Rule Generation in the Context of the Fifth Generation. In Proceedings of
:, e international Machine Learning Workshop. Monticello, Illinois, 1983.

:121 Minion, S. Constraint-based Generalization: Learning Game-Playing Plans from Single

Examples. In Proceedings of the National Conference on Artificial Intelligence. Austin, TX, 1984.

[13] Mitchell, T. Generalization as Search. Artificial Intelligence 18(2), 1982.

[14] Mitchell, T., Kedar-Cabelli, S. & Keller, R. A Unifying Framework for Explanation-based Learning.
Technical Report, Rutgers University, 1985.

[151 Naish, Lee. Prolog Control Rules. In Proceedings of the Ninth International Joint Conference on
Artrficial Intellegence, pages 720-722. IJCAI, Los Angeles, CA, August, 1985.

[16] Nelson, W.R. REACTOR: An Expert System for Diagnosis and Treatment of Nuclear Reactor
Accidents. In Proceedings of the National Conference on Artificial intelligence. AAAI, Pittsburgh, PA,
1982.

[171 Pazzani, M. & Brindle, A. An Expert System for Satellite Control. In Proceedings of ITC/USA/85,
the International Telemetering Conference, pages 27-41. International Foundation for Telemetering, Las
Vegas, NV, October, 1985.

[18] Pazzani, M & Brindle, A. Automated Diagnosis of Attitude Control Anomalies. In Proceedings of
the Annual AAS Guidance and Control Conference. American Astronautical Society, Keystone, CO,
February, 1986.

[19] Rosenbloom, P., Laird, J., McDermott, J., Newell, A., and Orciuch, E. RI-Soar: An Experime!t in
Knowledge-Intensive Programming in a Problem-Solving Architecture. IEEE Transactions on Pa:te'
Analysis and Machine Intelligence 7(5), 1985.

[20] Scarl, E.A., Jamieson, J., & Delaune, C. A Fault Detection and Isolation Method Applie lo -,c d
Oxygen Loading for the Space Shuttle. In Proceedings of the Ninth International Joint Conference cn
Artificial Intelligence. Los Angeles, CA, 1985.

[21] Schank, R. Dynamic Memory: A Theory of Reminding and Learning in Computers and Pec;,'e.
Cambridge University Press, 1982.

[22] Sembugamoorthy, V & Chandraskaran, B. Functional Representation of Devices and
Compilation of Diagnostic Problem Solving Systems. Technical Report, Ohio State University, Mar:h,
1985.

[231 Shortliffe, E.H. Computer-based Medical Consulation: MYCIN. American Elsevier, New York,
NY, 1976.

[24] Stallman, R. M. & Sussman, G. J. Forward Reasoning and Dependency-Directed Backrackng in
a System for Computer-Aided Circuit Analysis. Artificial Intelligence 9(2):135-196, 1977.

[25] Vere, S. Induction of Concepts in the Predicate Calculus. In Proceedings of the Foul-h
International Joint Conference on Artificiai Intelligence. Tbilisi, USSR, 1975.

(26] Wagner, R.E. Expert System for Spacecraft Command and Control. In Computers in Aercsoace
IV Conference. American Institute of Aeronautics and Astronautics, Hartford, CT, 1983.

Some Predictive Difficulties in Automatic Induction

A.P. White

and

A. Reed

Centre for Computing and Computer Science,
University of Birmingham,
P.O. Box 363,
Birmingham B15 2TT

Abstract

The predictive behaviour of Quinlan's ID3 algorithm is
examined when dealing with a synthetic example from number theory,
in which the attributes actually convey no information about class
membership. Although ID3 was able to construct rules for this
subject domain, cross-validation showed them to be dramatically
inadequate. Indeed, the performance was well below chance level.
The reason for this is identified as use of an inappropriate
branching criterion and the advantages of other branching criteria
are discussed. The statistical notion of over-fitting of
parameters is also introduced and the relative merits of
statistical and logical approaches are mentioned.

Introduction

The basic principle behind automatic induction is well known.
A problem domain consisting of a number of mutually exclusive
classes is exemplified by a number of suitably chosen cases (often
known collectively as the "training set"). Each such case consists
of a class indicator and a vector of attribute values. A suitable
induction algorithm is then set to work on these data to derive
one or more rules which can then be used to classify further cases
of unknown class membership (the "test set") from their attribute
values.

What may be less well known in the field of Machine Learning
is that there exist other techniques in the domain of Mathematical
Statistics which were developed to handle more general problems of
the same type. (These techniques are more general because they can
handle problems in which the classes overlap in the attribute
space, i.e. in which the attribute vector from a given case does
not provide an unambiguous indication of the class membershio of
that case). These techniques yield models (often linear ones)
which can then be used to classify further cases of unknown class
membership. In other words, models in Mathematical Statistics are
the counterpart of rules in Automatic Induction.

The Problem

Now, it is well known that statistical models are prone to a
particular difficulty. It is possible to fit too many oarameters
so that, although the apparent fit to the test data is good, the
actual predictive power of the model is actually worse than might
have been achieved more parsimoniously by using a smaller number
of parameters.

Note that the actual predictive power can be assessed by a
process called "cross-validation". This involves employing the
obtained model to classify some further cases that were not used
in deriving the model. The usefulness of this approach in testing
the efficacy of derived rules in the field of inductive learning
is recognised and utilised (e.g. Michalski and Chilausky, 1980).

The purpose of this paper is to draw attention to the
behaviour of Quinlan's ID3 algorithm (Quinlan, 1979) which, under
certain circumstances, allows rules to be constructed which have
no predictive power whatsoever. In fact, under these particular
circumstances, cross-validation shows that the performance is
actually dramatically worse than that obtainable by an intelligent
guess based on the prior probabilities of class membership.

An Example

For the purpose of illustrating this particular point, we
need an example about which we can be quite sure, on theoretical
grounds, concerning the relationship between the attributes and
the class membership. For this reason, the example actually chosen
was a synthetic one, derived from number theory. It can be
explained, quite simply, as follows.

The cases were actually the non-negative integers from zero
to N-i, where N is some suitable power of 2. These numbers were
actually regarded as falling into two classes - those exactly
divisible by 3 and those not. The numbers were expressed in binary
notation and each bit was considered to be an attribute.

In fact, 13 sets of consecutive integers were used. The
smallest set consisted of those numbers expressible with two
binary digits (i.e. the range zero to 3). The next set comprised
those numbers expressible with three bits (i.e. the range zero to
7). Each successive range employed one more binary digit and hence
t T-largest set used 14 bits and covered the range from zero to

Now, it is quite obvious from elementary number theory that
no logical combination of bit values of a number can have any
bearing whatsoever on its divisibility by 3. However, 1D3 had no
difficulty at all in constructing perfect classification rules for
each set of integers employed.

Cross-Validation

In order to assess the true efficacy of the induced rules, a
cross-validation technique was employed, as follows. Instead of
using full sets of integers, as described in the previous section,
all but one of the integers was used to derive the rule, which was
then tested by predicting the class membership of the remaining
integer. This procedure was then repeated with each integer in
turn being the odd one out. This entire procedure was then
repeated for each of the 13 sets of integers. (In fact there were
some regularities in the results that enabled some short cuts to
be taken, as well as an important symmetry which halved the work
required. These are described later. However, the whole exercise
still required a considerable amount of computer time). For all
these tests, the window in 103 was set wide enough to allow all
the cases in a given training set to be considered at once. This
was done in order to avoid possible unwanted side effects in the
predictions occurring as a result of the random number generator
coming into play in the selection of subsets of cases.

The class symbols 1 and 0 were used to represent,
respectively, divisibility and non-divisibility by 3. Here, we
shall represent the prediction outcome of actual class i and
predicted class j by the ordered tuple (i,j) and the total
frequency of such an outcome over a set of integers by the
notation f(i,j). The corresponding probabilities are calculated
from the frequency information in the usual manner and denoted by
p(i,j).

Fig. 1 gives the probabilities of the various types of
outcome, as a function of the number of binary digits used for the
integer set. It is apparent that, from 4 bits upwards, the results
for even numbers of bits were the same as those for one bit less.
This is because, for each set, the first half of the prediction
outcomes were the same as those for the entire set obtained from
one bit less. Furthermore, with even numbers of bits, the
predictions were symmetrical about the mid-point of the ordered
set of integers. (These features enabled substantial savings of

-- -

p.No. of bits p(0,O) p(0,l) p(1,O)

2 0.000 0.500 0.500
3 0.125 0.500 0.375
4 0.125 0.500 0.375
5 0.188 0.469 0.344
6 0.188 0.469 0.344
7 0.219 0.445 0.336
8 0.219 0.445 0.336
9 0.236 0.430 0.334

10 0.236 0.430 0.334
11 0.248 0.419 0.333
12 0.248 0.419 0.333
13 0.255 0.411 0.333
14 0.255 0.411 0.333

Fig. 1. Probabilities (to 3 s.f.) of prediction outcomes
as a function of number of binary digits.

P 1 116

computing time to be made).
It will be noted that only three types of outcome appear in

the results. The fourth type of outcome, i.e. (1,1), was never
observed to occur in these trials. Thus the only correct
predictions were for class 0. Of itself, this is not particularly
surprising, as the prior probability of class membership for class
0 is twice that for class 1. However, as is apparent from the
data, predictions for class 1 were made by the algorithm - but
they were invariably incorrect. This is particularly noteworthy
because making these less probable predictions actually reduces
the chances of being correct when the attributes convey no
information about class membership.

Thus the only source of correct predictions was the (0,0)
events. As can be seen from the table in Fig. 1, the probability
of these was remarkably low - although this probability does
increase as the number of attributes is increased. The obvious
question arises as to whether these probabilities are approaching
some asymptotic value. Unfortunately, we were not able to go
beyond 13 binary digits with the cross-validation trials because
at that point we reached an implementation limit of the computer
program. However, the predictions did form a partial pattern which
enabled us to put an upper bound on p(0,0), as follows.

From what was said earlier, (1,1) predictions were not
observed to occur. Therefore, all cases in class 1 were actually
mis-classified, i.e. taking the cases in order of magnitude, every
third prediction was of type (1,0). Sandwiched between these (1,0)
predictions were others of type (0,0) and (0,1), occurring in
twos. It was observed that two predictions of type (0,0) never
occurred adjacent to one another, whereas two predictions of type
(0,1) sometimes did - although this occurred with decreasing
frequency as the number of bits increased. Now, if these
observations hold true for any number of such binary attributes,
this admittedly tenuous argument would suggest an upper bound of
1/3 for the probability of (0,0) predictions.

Thus it would seem that, for this example, we would never get
more than one third (at most) of our predictions correct when
using ID3, however many bits were used. Note that this is in
marked contrast to what would happen if we just guessed "class 0"
each time. Such a strategy would produce a probability of success
of 2/3, without any computation at all!

Discussion

It is instructive to examine in detail what is happening
inside 1D3 when the induction process fails in this manner. In the
induced classification tree that ID3 produces, the nodes consist
of attributes and the branches consist of attribute values. The
leaves are the predicted classes.

Because the branching of such a classification tree consists
of a series of commutative processes, any given tree can be re-
written, taking the attributes in a different order, without
affecting the classification outcomes at all, although the
resulting tree may have a different number of nodes.

If the classification tree for a particular incomplete data

!37

set is compared with the tree derived from the full data set - but
rewritten to have the same branching order, then the two trees
will be observed to have identical structures, except in the
region of the omitted case. Obviously, the full tree classifies
all cases perfectly. However, the incomplete tree fails to
distinguish between the omitted case and the case that differs
from it only in the last attribute branched on (in the order
used). Thus the omitted case will be classified in the same
direction as this similar case.

Now let us consider the possibilities that can arise. The
class to which the similar case belongs determines the direction
of prediction. If the similar case is in the non-divisble class,
then the actual case may be in either class. However, if the
similar case is in the divisible class, then an incorrect
prediction is certain to occur because the number constituting the
omitted case differs on just one attribute (i.e. by some power of
two) from that constituting the similar case and hence cannot be
divisble by 3. Thus all predictions for class 1 will be incorrect.
This explains the absence of (1,1) events noted earlier. Of
course, the asymptotic value for p(l,0) is 1/3. we have not yet
found an analytical way of predicting the asymptotic values for
p(0,0) and p(l,0) although, as suggested earlier, there is a
tenuous argument for saying that the upper bound for p(0,0) is
1/3.

Having explained why prediction is so poor, it is now
necessary to explain why the 1D3 algorithm persists in deriving an
induction tree when the attributes actually convey no real
information about class membership. The reason lies in an
inappropriate choice of branching criterion in ID3. When the
classification tree is under construction, at each node a choice
is made concerning which attribute to branch on next. ID3 uses an
information-theoretic measure of tree complexity to select the
next attribute, with the aim of reducing the complexity of the
final tree. Unfortunately, this is not always the most appropriate
procedure. For a problem such as that under consideration, this
results in branching on attributes which convey no information
whatsoever about class membership.

As a preferable alternative, we should consider branching
criteria such as those suggested by Hunt et al (1966). Two
possibilities, in particular, are worthy of mention. Firstly,
transmitted information could be used as a measure of the extent
to which attributes provide information concerning class
membership. At each node, that attribute providing most
information on class membership would be selected for branching.
(Of course, it should be noted that, although this is an
information-theoretic measure, it is not the same as that used in
ID3 for assessing tree complexity).

The other idea is even more appropriate. This is to use the
chi-square test as a measure of association between class and
attribute. At each node, that attribute showing the strongest
association with class is selected 5or branching, subject to the
constraint that the value for X must achieve statistical
significance at some pre-determined level. The value of using a
significance test as a stopping rule for the branching process is
that with noisy data, chance frequency perturbations will be less

likely to be seized on by the algorithm, taking the branching
process farther than it should go. Of course, if branching is
terminated before discrimination is complete, then the induction
process is probabilistic. This topic and use of the chi-square
test as a branching criterion is dealt with in more detail by
White (1985). However, it is worth noting that, had this criterion
been used in a probabilistic induction algorithm for the current
example, then no branching at all would have taken place and the
outcome would merely have been probabilities of class membership
of 2/3 and 1/3 - which is entirely appropriate where the
attributes convey no information at all about class membership.
Indeed, not only is it considerably better than the result
achieved by the minimal complexity criterion, it is the best that
can be done.

Conclusions

What conclusions can be drawn from the peculiar behaviour of
the ID3 algorithm in these circumstances? Firstly, the importance
of cross-validation is re-affirmed. What appears to be perfect
prediction when inside the training set can drop to considerably
below chance level, with certain types of application, if the
rules are applied outside the training set.

The second point that should be emphasised is that of the
importance of the distinction between finite and infinite
populations of cases. With the former, if the entire population of
cases is used for deriving the rule, then there is no problem. No
matter how complex the rule, the problem of over-fitting does not
occur, simply because predictions are never made outside the
training set. Such situations can arise in chess endgame analysis,
for example. In contrast to this type of application, the domain
of medical diagnosis is a typical example of one where we are
dealing with an infinite population of cases and where the rules
are applied to cases other than those used for training. In these
circumstances, if the data are noisy, then it is probably a
mistake to elaborate the rule at the training stage until all the
exceptions are accounted for. This is overfitting.

Thirdly, this highly contrived example suggests the need to
look more closely at the nature of induction algorithms, in order
to determine whether they perform optimally under all conditions.

Fourthly, this example also highlights the need to examine
more closely the relationship between statistical models and
logical rules and the matter of whether the statistical approach
is better for some types of problem and the logical approach for
others. The simple answer to this is, of course, that the
statistical approach is more appropriate ':hen the data are noisy.
However, this can be a facile answer if we bear in mind that we
can reduce noise (either apparently or in reality) by using
further attributes to distinguish between cases which clash in the
original attribute space. If we are dealing with infinite
populations, under what circumstances are we justified in removing
the noise in this way (and using a logical approach) and in what
circumstances would we be guilty of overfitting? In the logical
approach, are there any characteristics of the induced

--A . ..

classification tree that enable us to tell, or must we always
employ the expensive technique of cross-validation? A possibility
worth investigating is to examine the way in which the size (i.e.
number of nodes of the induced tree) increases as the number of
attributes is increased. It is noteworthy that in the experiment
described here, the full induced trees had sizes which increased
exponentially with number of attributes employed.

A related issue is the choice of branching criterion. If a
finite population is involved and we have a complete data set,
then the choice of branching criterion is not important as regards
predictive accuracy and a minimal complexity tree may well be
preferable on grounds of parsimony. On the other hand, if we are
dealing with noisy data from an infinite population, it is
necessary to ensure that branching is only carried out on
attributes which are actually informative about class membership.

Finally, it is worth noting that this example provides a
dramatic illustration of the crucial importance of choosing
appropriate attributes. If we had used ternary digits instead of
bits, the solution would have been trivial!

References

Hunt, E.B., Matin, J. and Stone, P.J. Experiments in induction.
Academic Press, New York and London, 1966.

Michalsky, R.S. and Chilausky, R.L. Knowledge acquisition by
encoding expert rules versus computer induction from examples: a
case study involving soybean pathology. British Journal of Man-
Machine Studies, (1980), 12, 63-87.

Quinlan, J.R. Induction over large databases. Technical Report,
University of Sydney, March 1979.

White, A.P. PREDICTOR: An alternative approach to uncertain
inference in expert systems. In Joshi, A. (ed). Proceedings of the
Ninth International Joint Conference on Artificial Intelligence,
Los Angeles, 1985. Morgan Kaufmann, Los Altos, 1985.

I.

BRI TTLENESS AND MACHINE LEARNING

Stephen I. Gallant

February 22, 1986

College of Computer Science
Northeastern University
Boston, MA 02115 USA

ABSTRACT

Brittleness (or the lack of robust behavior) is a major problem in

Artificial Intelligence. especially with respect to expert systems. A

major cause of brittleness is tunnel vision. Which is defined as

making decisions based upon a few factors while Ignoring other

relevant factors.

This paper argues that tunnel vision and brittleness are fostered

by some of the fundamental goals and models employed in Artificial

Intelligence and that most common machine learning, knowledge

representation, and expert system schemes are predisposed toward

brittle behavior.

There are alternative techniques which avoid tunnel vision by

taking into account all relevant factors. One such knowledge

representation method employs networks of linear discriminants. This

scheme is well suited for machine learning algorithms, for

classification expert system knowledge bases, and, most importantly,

for automatic generation of classification expert systems from

training examples.

KEYWORDS: Knowledge Representation, Machine Learning, Expert System.
Brittleness. Linear Discriminant, Tunnel Vision, MACIE

NOTE: Partially supported by a grant from the Northeastern University
Research and Scholarship Development Fund. Thanks to Mark

Frydenberg, Mitch Wand, Carole Hafner, Karl Lieberherr and

Larry Bookman for helpful comments.

P .4f

I. Introduction

On July 29. 1985. the launch of the Space Shuttle Challenger was

partly aborted. Heat sensors on one of the three main engines

indicated dangerously high temperatures which, if accurate, would have

threatened the destruction of the craft and its human occupants.

Computers Immediately shut off the engine in question and the craft

limped into orbit. Had this occurred 33 seconds earlier, the vehicle

would have been forced to try a somewhat risky emergency landing in

Spain.

Almost immediately mission controllers suspected that the engine

was not at fault. They knew that heat sensors frequently failed and

they also noticed that there were no other indications of engine

failure, as would be expected in a true malfunction. Thus they

quickly deduced that the problem was with the temperature sensors, not

the main engine, and that the engine should not have been shut down.

Why was the program wrong and why were the controllers right?

The contrast is striking. The brittle rule--"If both heat sensors

indicate overheating, shut off the engine"--is correct most of the

time, but needlessly misses on some situations. The robust judgment

of a human expert, on the other hand, is usually more reliable.

This situation dramatically illustrates the nature of brittleness,

a troublesome problem in artificial intelligence models for knowledge

representation, machine learning, and expert systems. When the input

to a brittle system is slightly out of the ordinary, the system

P 143

collapses. It doesn't bend. it breaks. We take this behavior as a

loose definition of brittleness and also follow the common usage of

robust to mean "not brittle".

II. Tunnel Vision

Returning to the Shuttle launch example, why was the rule brittle

and the human judgment robust? The rule based its conclusion on

exactly two factors, namely the two heat sensor readings. The

controller examined all factors and acted differently. We may say

that the rule suffered from tunnel vision because it examined only two

key inputs, whereas the human expert took into consideration all

relevant information.

One of the main points of this paper is that any system which

significantly restricts the information entering into a decision is

predisposed toward brittleness. In short,

TUNNEL VISION CAUSES BRITTLENESS.

Restating the situation in terms of mathematical functions,

suppose we have a boolean decision function F based upon n input

a

features (see Fig. 1). Often we can approximate F by a function F

which examines many fewer features, yet correctly classifies inputs

*

most of the time. However F will fail in exactly those cases where

unexamined features are significant. To recapitulate. ignoring

Information may simplify decision functions, but It predisposes toward

brittleness.

-A ~

F 244

v 2 Unknown
* 3 ... A, Function Rv I V2 ' Vn

F

2 FRv I V2
(others F________ ____

ignored)

Figure I Functional View Function F* can approxi-

mate desired function F, but will be wrong
for those cases where ignored inputs are
necessary for correct output.

-A

Perhaps the reader is due an apology at this point for having

dwelt so long on such a simple point as "Tunnel Vision Causes

Brittleness." However if this thesis is accepted, then the

consequences are rather severe. It will be argued that most of the

knowledge representation, machine learning and expert system

generation schemes in current use suffer from (and often

enthusiastically embrace!) aspects of tunnel vision and therefore are

predisposed toward brittleness.

I1. Machine Learning and Knowledge Representation

Let us examine machine learning and associated knowledge

representation methods. One knowledge representation scheme

frequently employed is conjunctive or disjunctive normal form logical

expressions (IF-THEN rules) that are as simple as possible.

A disjunctive normal form (DNF) expression is generated by the OR'ing

together of terms, where each term consists of AND'ed boolean factors.

NOT's may now be sprinkled in to taste. E.g.:

C - (F1 and F5 and not F9) or (F3 and not FI).

Simplicity is assumed beneficial because of ease of comprehension

by humans and ease of communication. Humans, it is argued, often use

such expressions when explaining their own decisions.

But this Is not a plausible justification for using simple DNF

rules. Human communication is a very special activity. By necessity,

reading transpires slowly and in a more or less sequential fashion.

P 146

Speech and writing are even slower and more sequential. These are

constraints imposed upon human communication by the communication

media which are not present for other mental activity. It would

therefore be rather surprising if the knowledge representation system

employed in the constrained communication environment were also

employed in the unconstrained (or at least differently constrained)

mental environment. As a computer analogy, the CPU does not

communicate with itself and memory by first translating everything

into ASCII!

Thus the fact that humans give rule-like explanations gives very

little support to the use of rules or logical expressions for

knowledge representation.

A substantial amount of effort has been devoted to machine

learning algorithms that produce short and simple rules. This work is

mathematically interesting and useful for VLSI design and other areas.

However the. simpler the logical expression, the more it tends to

suffer from tunnel vision. Consider the following example.

Factors Correct Response

FI F2 F3 F4 F5 F6 F7 F8 F9 F O

Training Example 1 T T T T T T T T T T T
Training Example 2 F F F F F F F F F F F

Figure 2: Machine Learning Example.

In Figure 2 we have two training examples for a classification

problem based upon 10 factors. Most machine learning methods would

produce a beautifully simple rule for the example such as:

If F is TRUE then the classification is TRUE
else the classification is FALSE.

Yet this rule is incorrect!

The rule is incorrect because it does not agree with human common

sense for a large number of possible inputs. For example, consider

the following input:

F1 = True; F = F = ... = F = False.

The simple rule above gives what must be considered the wrong

answer due to its tunnel vision.

A correct, robust rule is given in Figure 3

If the majority of known factors are TRUE
then the classification is TRUE

Else if the majority of known factors are FALSE
then the classification is FALSE

Else the classification is chosen
to be TRUE or FALSE arbitrarily.

Figure 3: Correct, robust rule.

The correct rule works much better in noisy environments. For

example, suppose each F. is only 85% reliable. Then the original ruleI

is wrong 15% of the time, while the new rule is wrong less than 0.6%

of the time. In general it is preferable to take all relevant

features into account, including redundant features, when dealing with

noisy environments. Otherwise tunnel vision results and decisions are

less reliable.

Another advantage of the correct rule is its applicability to

situations where only partial information is available. For example

suppose a subset of F2-F0 is known but FI is unknown. The rule in

Figure 3 is still corect while the original rule Is useless since it

only examines F1.

These examples illustrate the drawbacks of purchasing simplicity

at the expense of tunnel vision, particularly if noisy systems are

involved,

Machine learning methods are not the only problem; there is a

severe problem with the knowledge representation schemes used in

conjunction with machine learning. The reader may have already

objected to the language in the correct rule above, in particular the

use of the phrase "majority of the known factors." For example, what

if we change the problem by renaming every even numbered factor to its

opposite value as in Figure 4.

Factors Correct Response

F F F F4 F4 F6 F6 F8 F8 F

Training Example 1 T F T F T F T F T F T
Training Example 2 F T F T F T F T F T F

Figure 4: Machine Learning Example with even factors renamed.

j . _

r

Conceptually the situation has not changed at all -- we have only

relabelled factors -- yet stating a correct rule has suddenly become

messy. Thus the inherent simplicity of a correct rule can be lost

when representing it as a logical expression, and it may be difficult

to describe such rules informally.

An even more serious problem is that 10 C5 (combinations of 10

objects chosen 5 at a time) terms are needed to represent the rule in

Figure 3 using disjunctive normal form expressions. The number of

terms in a disjunctive normal form expression can quickly get out of

bounds for slightly larger problems, since combinations grow

exponentially. Therefore disjunctive normal form expressions cannot

represent rules of the form "K or more out of L factors are True" for

even moderately sized problems due to the number of terms required.

This situation can be ameliorated somewhat by generating new variables

which correspond to intermediate terms, but few (if any) machine

learning schemes do this.

The above arguments lead us to conclude that simple logical

expressions, as a means of knowledge representation, are not well

suited for expressing robust rules.

Another common knowledge representation system frequently used

with machine learning is the decision tree. To demonstrate the

decision tree's unsuitability for robust rules, the reader need only

construct the tree for the correct rule given In figure 3 where each

P i5,

decision variable is a single factor's value (e.g. F3 - TRUE, FALSE,

or UNKNOWN).

Again we can merge some of the nodes to cut down the

dimensionality of this problem, but it is not clear how to do this in

general and there are still too many nodes.

Frame based knowledge representation systems, by the same

arguments, are also predisposed toward brittleness. "Slots" are

clearly the handiwork of the Tunnel Vision Demon. In the classical

frame setup; there cannot be too many slots since all must be

satisfied if the corresponding object is to be recognized. Yet

limiting the number of slots produces tunnel vision and brittle

representations. See Brachman[1985] for an interesting discussion of

these problems.

IV. Expert Systems

E'xpert systems are built upon quicksand. Most employ a knowledge

base consisting of logical expressions, predisposing them toward

tunnel vision. Even worse, the process of constructing such a

knowledge base reinforces this tendency.

It is only natural for a knowledge engineer to seek out simple

rules for decision variables. This means finding a small set of

factors which determine the situation most of the time, as in the

Space Shuttle heat sensor rule. It is hard enough to build and debug

a knowledge base consisting of simple rules; it is even more difficult

]A

F 51

if complex rules are used. Yet simple rules usually result in tunnel

vision and brittleness.

It is difficult for a knowledge engineer to escape this dilemma by

using complex, robust rules. *Suppose, for example, a less brittle

engine shut-off rule is desired for the Space Shuttle. One possible

approach is to start with the original rule which is based upon two

sensors and modify it by considering the influence of other factors,

taking them one by one. Generally many other factors must be

considered to avoid brittleness. Great care must be taken that each

additional factor does not increase the current set of rules by some

fixed fraction, or else the number of rules will grow exponentially.

But if the number of rules is kept small, individual rules will

increase in complexity and become increasingly difficult to debug.

Even with a suitable knowledge representation scheme, it may not

be humanly possible to hand-build a robust knowledge base for a large

system. It appears that machine learning techniques are necessary

(though perhaps not sufficient) for constructing a large, robust

expert system.

But what are the learning techniques and where is the knowledge

representation scheme powerful enough to express robust rules?

IV. Is There No Hope?

Lest the reader become despondent and do something drastic such as

take up assembly language programming, we hasten to point out that not

P 152

all schemes for knowledge representation. machine learning, and expert

system generation suffer from tunnel vision.

Perhaps the simplest way around tunnel vision is to remember all

training examples. When a new-situation is presented. the retained

example closest to that situation is chosen for emulation. There is

an expert system shell currently being sold which uses just this

procedure. Among the drawbacks to this scheme are the fact that

storage requirements and response times grow with the number of

examples

A second scheme which is more to our liking uses Linear

Discriminant Networks (LDN's) for knowledge representation. (For a

good general reference on linear discriminants see Duda & Hart [1973].

We will briefly show how some of the previously discussed examples fit

into this framework.

Let us reconsider the machine learning example from Figure 2.

Since all factors are boolean (or unknown), it is convenient to

represent their values numerically as follows:

Fif Fi is FALSE
0 L LUNKNOWN

We can now represent a linear discriminant decision rule by a

vector of integer weights:

< W0 ! W 11 Wn >

where the rule is computed by comparing the sum of weighted factors to

0:

P 153

>0 TRUE
If W0 Wi F1 < then conclude FALSE

= UNKNOWN.

Thus the robust rule given in Figure 3 could be represented:

< 0 1,, 1, 1, 1, 1, 1, 1,1 >

It is now trivial to represent a robust rule for the modified

example in Figure 4:

<0:-1, 1.-1. 1, -1.1, -1.1,-i>.

Any logical expression can be represented by a set of linear

discriminants as demonstrated in Figure 5. Thus a network of linear

discriminants can represent any function.

Disjunctive Normal Form Expression:

F = (A and not B and C) or
(A and D) or
(B and not D and not E)

Corresponding Linear Discriminant Network:

Inputs Outputs

W0 WA WB WC WD WE WD WD2 WD3

Discrl.. *1: < -2 1 -1 1 0 0 0 0 0 > -- > DI
Discrim. *2. < -1 1 0 0 1 0 0 0 0 -- > D2
Discris. *3: < -2 0 1 0 -1 -1 0 0 0 > -- > D3
Discrin. *4: < 2 0 0 0 0 0 1 1 1 -- > F

Figure 5: Disjunctive Normal Form Expression represented as
Linear Discriminant Network. All inputs and outputs
are +1 (True) or -1 (False). Each term in the DNF
expression is computed by a single discriminant, and
the last discriminant OR's the terms to compute F.

Methods for computing discriminant weights (and the network) are

currently being studied by a number of researchers: Hinton [1984].

Barto[I985], Gallant [1986ab], and Rumelhart[1985].

The MACIE system for generating expert systems from training

examples uses some of these techniques. A linear discriminant network

is first computed from training examples. Then a special inference

engine uses the LDN as a knowledge base to perform inferences,

identify useful unknown information, compute likelihoods, and give

justifications for inferences (in the form of simple IF-THEN rules).

The Appendix gives a sample run of MACIE that demonstrates its

explanation facility. For a more complete description see [Gallant

1985a].

How would the Shuttle rule for engine shut-off look using LDN's?

One simple rule might say

"If heat sensors 1 and 2 (represented by S1 and S2) fire and 5
out of 100 other factors (represented by F1 -F1 o0) give positive
indications, then shut down the engine."

Here's the discriminant network (with only one discriminant) that

expresses this rule:

C S1 S2 F1 F2 F3 F 100

< -109 ! 100, 100, 1, 1, 1..... 1 >

So if both sensors fire along with F through F5 , the calculation

gives:

-109 (100)(+l) + (100)(+I) + 5(1)(-1) - 95(1)(-1) - I > 0

so the engine shuts down.

Of course we may want to make some of the 100 factors more

important than others or have shutdown if only I sensor Indicates

overheating when accompanied by lots of other lessor indications.

This can be done by adjusting weights appropriately or by adding

discriminants to the network when necessary.

Procedures for computing LDN's are described in the previously

mentioned references. Current research seeks to determine whether LDN

generation methods are fast enough to be practical for larger

problems. (MACIE style expert systems are very fast at "run time",

once an LDN has been generated at "compile time".)

V. Summary and Conclusion

We have defined tunnel vision as the focusing on a few variables

while ignoring other significant variables and have claimed that

tunnel vision predisposes a system toward brittleness. Based upon

this criterion we have found:

1. Commonly used knowledge representation schemes such as logical

expressions, decision trees, and frames are not well suited for

representing robust systems.

2. Machine learning techniques producing rules which minimize the

number of factors examined are lnteresting mathematically but fail to

address problems of brittleness and are not well suited for noisy,

redundant environments.

P 756

3. It is extremely difficult to hand-build a large expert system

that is robust. Machine learning techniques are probably necessary,

though perhaps not sufficient, for such a task.

4. Some knowledge representation, machine learning, and expert

system schemes do not encourage tunnel vision. In particular. those

methods based on linear discriminant networks seem promising.

We conclude that additional effort should be applied to knowledge

representation and machine learning schemes that are more conducive to

robust systems. Finally, we reemphasize the necessity of employing

machine learning techniques for the construction of large, robust

expert systems.

P 157

REFERENCES

[Barto 1985]
Barto, A. F. Learning by Statistical Cooperation of Self-
Interested Neuron-like Computing Elements. Human
Neurophysiology, to appear.

(Brachman 1975]
Brachman, R. J. "I Lied about the Trees" Or, Defaults and
Definitions in Knowledge Representation. AI Magazine, Fall
1985, 80-93.

(Duda & Hart 1973]
Duda, R. 0. & Hart, P. E. Pattern Classification and Scene
Analysis. (1973) John Wiley & Sons, New York.

[Gallant 1.985a]
Gallant, S. I. Automatic Generation of Expert Systems From
Examples. Proceedings of Second International Conference
on Artificial Intelligence Applications, sponsored by IEEE
Computer Society, Miami Beach, Florida, Dec. 11-13. 1985.

[Gallant 1986a]
Gallant, S. I. Optimal Linear Discriminants. Technical
Report SG-85-30, Northeastern University College of Computer
Science. To appear, Eighth International Conference on Pattern
Recognition, Paris, France, Oct. 28-31, 1986.

[Gallant 1986b]
Gallant, S. I. Three Constructive Algorithms for Network
Learning. To appear: Eighth Annual Conference of the
Cognitive Science Society, Amherst. Ma., Aug. 15-17, 1986

(Hinton 1984]
Hinton, G. E., Sejnowski, T. J., & Ackley, D. H. Boltzmann
Machines: Constraint Satisfaction Networks that Learn.
Technical Report CMU-CS-84-119, Carnegie-Mellon University
Department of Computer Science

(Rumelhart 1985]
Rumelhart, D. E., Hinton, G. E., & Williams. R. J. Learning
Internal Representations by Error Propagation. ICS Report 8506,
Institute for Cognitive Science, University of California, San
Diego, Sept. 1985.

A ___- _

%,z

PURSUING Admalnster Nerdecillin
PURSUING "dMinister Cacatycla

SA) P1Is the patient allergic to Cacamrycin? lY/n/71

CONCLLDE: (9) Admlnlster Cacamycln FALSE.

PURSUINMG Administer Nerdecllin
PURSUING Inflamed Plethorus

Is the patlent'. -eight normal? (y/n/7)(D
Enter 'q' for explanton of the last question

'v 8. for explanation of varible number C

APPENDIX: EXAMPLE Of AUTOMATIC GENERATION OP AMo

EXPERT SYSTEM FOR DIA OSIS AMD TREATMNT OF Administer Cacaaycl is FALSE duo to the

PLET3OR.AL DISEASE following rule:

I Allergic to Cactycla is TRUE

Note: Input to learning program given In
figure 2. Learning " tri produced Is given In THEN CONCLUDE Administer Cacasycln Is pALSE.
fIgure 3. Pit baa bet edited sligntly for
readabilit1 . Is the patient' weight morsel7 (y/n/?)

MFACIE Version 1.8 (c) 1965 S. 1. Gallant

Enter ame of file containing Knowledge Base. CONCLUDE: (7) Inflated Plethorus TRUE.
CONCLUDE: (10) AdeIniSter .WrdecIllin TRUE

Enter InitIal values Ior T. I. or G variabies.
Format: Varlable sumber, value

nielltlalized variables are set to 0 (UNKNOWN)

Numbers and name, of ariableo,:
LL#VT

1: Paver between 100 end 102 F
2: Normall Weight

3: High White Cell Count

4: Tougheninl of skin
5: Reddish tlnge to hair
6: AllergIc to Cceallyl
7: lntlaed Plethorus
: Poblanocoas

9: adoalnster Cacacyc l
10: Adainlster Nerdeclhln

CONCLL'I. (14 Poblanooede FALSE.

PURSUING Administer Nerdecilifn

PURSUING Adainister CaCtayCin

Is the patient allergic to Cacamycla? (y/nl/)

gater -q' for esplanatlos of the lost questloo
'v S' for ezpleaatlos of variable number 8

(Why se poilanocosis determined to be pALS7?

Pobilaocols Is FALS doe to the followlig rule:

IF Nigk White Cll count Is FALSI
AND Reddieh tInge to hair ie PALSE

TI.N CONCLUMD POblinocOelS to FALSE.

Is the patient allergic to Cacamycin? ly/n/7)

tater 'Q' for ezpametio of the last queetio
', S' for explaatlqa of variable number 0

O Why e thie questioo asked7)

Allergic tO CacauyCia i a factor
which gives negative support for

Aminister Cacsycis

which givee negatlve support for
Administer NerdecililI

aich Is the Goal Variable with highest

Likel ,load.

P :59

PROTOS: An Experiment in
Knowledge Acquistion for Heuristic Classification Tasks'

Bruce W. Porter
E. Ray Bareiss

Computer Sciences Department
University of Texas at Austin

Abstract
PROTOS is an experiment in acquiring, applying and revising expert know-

ledge for heuristic classification. Learned knowledge includes exemplar-based cat-
egories and domain knowledge to support explanation and pattern matching. Re-
search on PROTOS has revealed fundamental issues in concept formation and clas-
sification concerning representation of ill-defined, "fuzzy" categories, multiple ap-
plications of learned knowledge, and the context in which learning takes place. This
paper highlights these issues, describes the PROTOS approach to learning heuristic
classification, and surveys related research.

1. Introduction
Machine learning research on concept formation has ignored many thorny

issues. These issues fall into three categories-

1) learning natural, "fuzzy" concepts. Natural concepts describe our everyday
world. Because of the significant variability of objects in our world, examples
of natural concepts are rarely all or none [LANG84). Classical definitions,
which consist of necessary and sufficient features, do not exist for natural
concepts [SMIT8 1, WITT531. Much of the research in concept formation has
focussed on learning artificial concepts, which are classically defined, such
as darch" tWINS751, "prime number" [LENATTI, and "Good Problem-States
for Applying Integration by Parts" (MITC83, PORT86]. Learning natural
concepts requires a radical departure from past induction-based learning
strategies.

2) multiple applications of learned concepts. The knowledge acquired by con-
cept formation programs is sparce. This is apparent when you consider the
range of functions that learned knowledge should support. This includes
classification of new objects, summarization of training instances, genera-
tion of examples of a concept, prediction of unseen features of a new object,
interpretation of "fuzzy" examples, and explanation. Concept formation re-
search has addressed only the first two functions. New objects are identified
by matching with a generalized concept description, which is acquired by

t Support for this research was provided by the National Science Foundation under grant number
IST-8510999 and the Army Research Office under grant number ARO DAAG29-84-K-0060.

summarizing the training set via induction. Supporting the other impor-
tant applications of learned knowledge requires de-emphasizing the role of
generalization in concept formation.

3) the context in which the learning takes place. Concept formation from either
unclassified or classified training examples is an artificially difficult cognitive
task. Theoretical analysis suggests that large classes of disjunctive concepts
may not be learnable from this training tVALI84]. Psychological evidence
suggests the importance of a responsive environment for concept learning
(e.g. [HILG751). Experimentation, problem solving, and instruction are
crucial to learning. Learning is in support of problem solving. Instruction is
provided by a teacher who explains the reasons-for problem solving failures.
These important roles of the teacher and the problem solver in concept
formation demand reappraising our machine learning models.

The goal of our research is to address these issues in a computational model
of the acquisition, use, and revision of natural concepts. We are motivated by
discoveries in cognitive science concerning concept formation and representation
(e.g. [SMIT81, ROSC78, NEELS741) but the focus of our research is the design of a
useful architecture for the acquisition and application of knowledge by computer.
We are constructing a learning system, named PROTOS, which evolves into an
expert system for a complex task. PROTOS learns by attempting to solve problems
posed by a domain expert; focussed interaction with the expert uncovers the cause
of problem solving failures and guides learning.

The problem solving task for PROTOS is classification. The vast majority of
expert systems are designed for this task. As characterized by Clancey [CLAN85],
these systems have an inference structure that relates an object description to a pre-

enumerated set of classifications. Since the classification of an object is typically
based on an imperfect match, heuristics are used to bolster the match. Clancey
defines heuristic classification to be the use of non-hierarchical, uncertain inference
in classification. PROTOS is an architecture for supporting the acquisition and
application of domain knowledge for heuristic classification.

PROTOS learns by attempting to classify objects. Classifying an object entails
recalling a similar object which has been previously classified and constructing a
convincing explanation of the similarity. If PROTOS fails to correctly classify and
explain then the teacher intervenes. The teacher might correct the classification or

provide additional explanation. The role of PROTOS as a student is to evaluate
explanations and to maintain memory organization.

The remainder of this paper describes the motivation and design of PROTOS.
Related research in machine learning is presented in the next section. Section 3
incrementally develops the PROTOS approach to learning heuristic classification

knowledge. Finally, section 4 outlines our current and future research.

2. Related Work
Machine learning is of central importance in the recent surge of interest in

knowledge acquisition tools for expert system. Most of this research focusses on the
interaction with an expert to elicit heuristic classification knowledge. Knowledge
representation and application issues are not addressed because the goal is to
produce rule-based expert systems, which are well understood. The research is
pragmatic, borrowing little from cognitive science. This section reviews this related
work by describing the viability of each approach for eliciting knowledge from an
expert.

Rule induction algorithms (e.g. ID3[QUIN861, Plant/DSMICH80]) have a
limited range of applicability. Typically, these algorithms are given training in the
form of classified examples from a teacher. Similarities in the training examples
suggest generalizations which are represented as rules. The teacher is "outside the
learning loop" so there is no chance to guide the search for useful generalizations.
The algorithms are highly sensitive to a priori bias and peculiarities in the training
set. Most of the algorithms are non-incremental since they require all training
examples before learning begins. The most serious limitation of these algorithms
is that the learned rules only support the function of classification. The knowledge
base formed by similarity-based inductive learning is unsuitable for other essential
functions such as explanation [SCHA86].

Another approach to learning heuristic classification knowledge is to automate
the activities of a knowledge engineer interviewing a domain expert. Examples
of this approach include MORE [KAHN85], Tieresias[DAVI77], ROGET[BENN85],
and the Expertise Transfer System [Boos84]. The main activities of these systems
include analyzing the structure of the knowledge base, detecting possible weaknesses
and inconsistencies, and focusing the expert on corrections. Unlike rule induction,
the learning is incremental and guided by the domain expert. The sources of power
in most of these systems are the connection with an expert system guided by (par-
tial) domain knowledge and the ability to ask focused questions of the expert. An
analysis of the knowledge can reveal structural problems of known types, which
are described to the expert for correction. This approach to acquiring heuristic
classification knowledge demonstrates the viability of knowledge-base analysis and
focussed interaction with the teacher. However, the limitations of rule-based sys-
tems impair the approach. In particular, these techniques require a richer language
for knowledge representation than rules provide.

Learning apprentice systems are a promising approach to knowledge acquisi-
tion. As defined by Mitchell, et.al. (MITC86], a learning apprentice 8estern is:

.... a knowledge-based system that provides interactive aid in solving some problem,
and that acquires new domain knowledge by generalizing from training examples
acquired through the normal course of its use.'

These systems have been demonstrated in various domains including VLSI circuit
design [Mrrc85, MAHA85, ELLM85], game playing [MINT84, FLAN86], and story

understanding [DEJo81]. Learning apprentice systems observe the expert's per-
formance and construct an explanation of unexpected actions. Each explanation is
constructed from a priori domain knowledge, generalized, and saved for future use.
The source of power of these systems is the domain knowledge for constructing ex-
planations. Acquiring and representing this initial knowledge is a major obstacle to
their construction. PROTOS can be viewed as an apprentice system which learns
the domain knowledge required for explanation-based reasoning.

3. The PROTOS Approach to Learning and Problem Solving
The primary tenet of PROTOS is that classification of objects must be model-

directed. A model guides classification by providing biases and expectations. Clas-
sification of an object is the process of selecting an appropriate model and coercing
the description of the object to conform to the model. Learning to do this task re-
quires learning and indexing models and acquiring the domain knowledge necessary
to coerce object descriptions.

This section incrementally develops the PROTOS approach to learning and
problem solving for heuristic classification tasks. First, we review the seductive ap-
peal of inductive learning and the serious consequences of adopting a representation

of categories based on induced features. An exemplar-based category representa-
tion, which de-emphasizes the role of induction, is presented as the foundation of
PROTOS. Second, we describe PROTOSi which learns and uses explanations to
both perform model-directed classification and unite category members. Finally,
we discuss PROTOS2 which learns and uses differential reminding power of object

features to guide the search for an appropriate model.

3.1 Exemplar-Based Categories: The Foundation of PROTOS
Research on concept formation usually makes the simplifying assumption that

a concept can be represented by a classical definition. A classical concept definition

is a set of necessary and sufficient conditions for an object to be an instance of
the concept. This section explains the strong appeal of this assumption for AI
researchers and the serious consequences of its adoption. Exemplar-based categories

are presented as a promising alternative.

There are distinct benefits from assuming a classical definition of concepts.

The first is that concept formation is reduced to induction. Given a collection of
positive and negative examples of a concept, necessary features are extracted from
near misses, and sufficient features are extracted from positive examples. Con-
cept formation is search with standard generalization and specialization operators
(MITc82, MICH83I. The defining features of the concept, shared by all positive
examples, are inferred by induction over the training set.

The second benefit is that object identification is reduced to deduction. One

of the primary uses of learned concepts is to identify an object from a partial

-"A -z__ ,

description. In this sense concepts are pattern recognizers. Object identification
simply requires a successful match of the object with the defining features of the
concept. The identification is all or none; unclear classifications are not considered
because of the restrictive nature of classical concept definitions.

Unfortunately, classical concept definitions onlyt work in artificial domains,
such as those frequtently used to demonstrate AI systems. There ae four major
shortcomings of classical concept definitions for natural concepts (see [SMIT81,

BARE86] for additional discussion). First, the defining features of most natural
concepts cannot be enumerated. This problem is easily observed by trying to

form classical definitions for natural concepts such as chair, bird or appendicitus
condition. Second, classification of some objects is unclear. For example, tomatoes
share features of both vegetables and fruits. Third, many concepts are disjunctive.

A vehicle can have either a steering wheel or handlebars. Forth, there are variations
in typicality among instances of a concept. Some instances are "better" exemplars
of the concept than others.

One solution to the problems of classical category definitions is to weaken the

requirements for category membership. Rather than attempting to describe cate-
gory members using necessary and sufficient features, a probabilistic representation

uses weighted features and a threshold for identification. For example, a vehicle

might be represented as:

(engine(.5), ateeringw heel (.3), peddes(.4), handlebars(.2))

matching threshold = .9
Probabilistic definitions support object identification without requiring a perfect
match. An identification succeeds if the combined weights of the matched features
exceeds the identification threshold. This form of representation is commonly used
in expert systems, such as MYCINSHOR761 and Internist(POPL821.

The probabilistic representation [SMIT8 11 avoids the problems of the clas-

sical represent&.ion but introduces new problems of its own. Information about
correlations among features is lost. For example,

engine co-occurs with steeringwheel and with handlebars.

steeringwheel never co-occurs with handlebars.

peddles co-occurs with handlebars but rarely with steeringwheel.

Without this information, realizable instances of a concept cannot be generated, and
unobserved features of an identified instance cannot be predicted. In summary, the

probabilistic representation can encode fuzzy categories, but the fuzziness cannot
be controlled.

The exemplar representation of categories [SMIT81] is a partial solution to the
problems of classical and probabilistic representations. Rather than attempting
to form a conceptual abstraction of the descriptions of category members, this

pp

representation is extensional. A category is simply a collection of its typical and

atypical exemplars.

Unlike "compiled" knowledge representations, an exemplar-based category
structure can support multiple functions. Classification of a new object is per-

formed by finding the exemplar(s) in the knowledge base which matches it most

closely and assigning the new object to the same category. Explanation of a
classification is facilitated by reporting a similar, known exemplar. Prediction of
unseen features of an object is based on feature correlations in the closest matching

exemplar(s). Example generation simply involves exemplar retrieval (perhaps
ordered by typicality).

Despite these advantages, the exemplar-based representation of categories
introduces some problems. First, exemplar-based categories lack cohesiveness

[SMIT81]. The underlying commonality of the category members is not explicit
in the representation. As described in the next section, PROTOS1 extends the

exemplar representation to address this problem; category members are united by

explicit explanations of the rationales behind their classification. Second, an ob-
ject to be identified may not exactly match a stored exemplar. This problem is
addressed in PROTOSI by translating object features to bolster a partial match.

Third, object identification requires finding a "similar" exemplar. This search for
candidates must be guided. As described in section 3.3, PROTOS2 guides the
search with learned knowledge of the reminding power of features with respect to

categories.

3.2 PROTOSI: Explanations Support Inexact Identification
PROTOS1 is an implemented system which demonstrates knowledge-based

pattern matching to support the identification task. Knowledge-based pattern

matching is motivated by the observation that learned categories guide our inter-
pretation of new objects. An object 0 is identified by recalling a learned exemplar
which shares the salient features of 0 and coercing matches among the remaining

features. The recalled exemplar serves as a model; effort is expended to confirm
the expectations generated by the model. PROTOSI learns and uses exemplars as

models for guiding identification; PROTOS2 indexes exemplars according to their
appropriate uses as models and learns how much effort to expend on knowledge-
based pattern matching.

Knowledge-based pattern matching is similar to the matching procedure in
explanation-based learning (e.g. [MITC86, DEJo81) and constructive induction

(STEP86]. Each employs domain knowledge to construct an explanation of the
relationships between observed, extrinsic features and criterial, intrinsic features.

However, PROTOS1 learns the requisite knowledge and provides a richer language
for explanations.

Domain knowledge to enable knowledge-based pattern matching is learned

from explanations of classified objects presented by the teacher. This differs

4A

,P 175

Given object 0 to be classified
REPEAT

cla uify:
Use domain knowledge to explain the similarity of 0 to a
previously classified object (exemplar).
Analyse the explanation.

lewM:
IF the classification and explanation are correct
THEN

IF object and exemplar are identical
THEN Increase confidence in the exemplar
as a good representative of the category.
ELSE Add 0 as a new exemplar of the category.

IF the classification is incorrect or the explanation is weak
THEN Solicit domain knowledge from the teacher.

UNTIL the teacher is satisfied.

Figure 1

Overview of PROTOSI

from the training provided to most concept formation systems. For example,
ID3[QULN86] and Plant/DS[MICH80] are given a featural description of an ob-

ject (i.e. the "input" to an expert) and the object's classification (i.e. the "output"

from the expert). This training is relatively easy to provide and is well-suited to
inductive learning but is too sparce. Information is not provided concerning how

the features of an object relate to its classification (i.e. the "intermediate states"

of the expert's reasoning).

Explanations are provided to PROTOS1 by the teacher when independent

problem solving fails. The failure might be due to an incorrect object classification

or a "buggy" explanation for a classification. Given a description of an object to
be classified, PROTOS1 first attempts classification by constructing an explanation

and then learns from the result. The abstract algorithm in figure 1 describes this

two step process.

Knowledge-based pattern matching relies on constructing explanations of sim-

ilarity. PROTOS1 provides a more expressive language for explanation than the

commonly used language of production rules (e.g. [DAv177, CLAN83, MITC85]).

The "right arrow" which relates antecedent to consequent in a production rule is
ambiguous. In disambiguating the "right arrow" relation, we have identified six
categories of relations:

1) feature to definition mappings. Common sense or a domain fact relates two
features. For example, adolescents are minors.

2) structural to functional feature mappings. A perceived feature implies or
enables the function of an object. For example, wings enable flight.

-A. .J

P 166

3) circumstantial to inferred feature mappings. A perceived feature suggests a
potentially more relevant feature. For example, fangs implies carnivorous.

4) specialization to generalization mappings. This is the traditional taxonomic
relation. For example, beagle is a specialization of dog.

5) current state to successor state mappings. An underlying mechanism causes
some change over time. For example, air pollution causes acid rain.

6) part to whole mappings. A feature is a. part of an assembly. For example,
wheels are part of a car.

The explanation language in PROTOS1 is an elaboration of these broad categories.
PROTOS1 knows about these relations from a priori knowledge and from past
examples of their use in the domain.

Training provided to PROTOS by the teacher is a featural description of a
training example augmented with an explanation of the relevance of each feature to
the classification of the example. The explanation of the relevance of a feature is a
path through domain knowledge which justifies the significance of the feature. For
example, V8 engine is a feature of an exemplar of the category car. One explanation
associated with the feature is:

V 8engine peengine enables movementfunc vehicle geni car

A network of domain knowledge, called a category structure, is incrementally
built up from the exemplars and explanations provided during training. Nodes in
the network are exemplar-based categories, as described in the previous section.
Arcs in the network are relations from the explanations of training examples. For
example, the category structure containing the preceeding explanation is shown in
figure 2.

An important representational capability is the elaboration of features to
arbitrary levels of detail. In figure 2, the object feature V8engine is itself an
exemplar-based category. This ability to examine a feature "under a microscope"
has two important advantages for PROTOSI:

1) The teacher can shift the level of granularity of the description of training ex-
amples. After teaching PROTOSi an exemplar-based category, the teacher
can use the category as a higher-level feature.

2) PROTOS1 can bolster a suspected high-level, featural match by attempting
a more detailed match with exemplars of the features.

A priori knowledge in PROTOS1 is used to critique explanations generated
from either knowledge-based pattern matching or teacher training. For example, a
long explanation path containing circumstantial associations is more suspect than
an identical match. PROTOS1 evaluates each explanation using criteria such
as path length, types of relations used, supporting explanations, and competing

P 117

Note: V felature po zemplar

Figure 2
A Sample.Category Structure

classifications (c.f. [COHE85I). PROTOS1 solicits knowledge from the teacher to
clarify and bolster a suspicious explanation. Because explanations refer to specific
exemplars, discussion with the teacher is highly focussed [PORT85].

Knowledge-based pattern matching introduces critical problems of eficiency

which are not addressed by research in explanation-based learning. In particular,
when attempting to classify an object by matching it with a similar exemplar, two
issues arise:

1) Because of the computational expense of knowledge-based pattern matching,
heuristic knowledge is required to limit the pattern matching operations
which are attempted. This knowledge guides the selection of promising
match candidates and determines how much effort to expend on confirming
the match. How is this knowledge acquired a d used?

2) Once the object is classified, it must be integrated with neighboring exem-
plars. This involves adding the object as an exemplar or generalizing with
very similar exemplars. How is the set of "neighboring" exemplars deter-

mined?

.... ~

P 168

3.3 PROTOS2: Remindings Support Efficient Indexing
We are currently implementing PROTOS2 which addresses the two problems

identified in PROTOSI. The primary addition to the system is learning and using
differential reminding power of object features. The features of an object to be
identified can provide clues to which classifications to attempt. These clues suggest
initial models which guide knowledge-based pattern matching. This indexing eff-

ciency for object information is part of the general issue of reminding discussed by
[SCHA82, Rosc75].

Object features can remind PROTOS2 of past exemplars or learned categories.
For example, the feature engine has reminding power for the category of car while
the feature leaky - trunk has reminding power for the exemplar my - car. Engine
is shared by all exemplars of car while leaky- trunk is idiosyncratic of my - car. In

general, the reminding power of a feature is strongest for the category or exemplar
which has the highest conditional probability given the feature.

PROTOS2 learns the reminding power of features by both similarity-based
and explanation-based analysis. The similarities in multiple examples and the
explanations of individual examples determine the reminding power of features.
PROTOS2 might receive many exemplars of car which have an engine or a single
exemplar, my - car, with the explanation of the feature:

e .partof exemplar
engine car my - car

Both suggest that engine has useful reminding power at the level of the category
car.

The features of an object to be classified typically cause multiple remindings.
PROTOS2 combines these remindings to focus on a region of the category struc-
ture. The search for a model begins with the strongest reminding of an exemplar
or category and spreads to neighbors in the region until knowledge-based pattern
matching succeeds. When reminded of an exemplar, PROTOS2 attempts to es-
tablish a match using the exemplar as a model. When reminded of a category,
PROTOS2 selects a prototypical exemplar of the category as a model. This selec-
tion is based on knowledge of the family resemblance and masa of each exemplar.
The family resemblance of an exemplar is a measure of typicality[Rosc75]. An
exemplar is "typical" of a category if it contains features shared by many other
exemplars of the category. The mass of an exemplar is the frequency with which
it has been seen. An exemplar with high mass represents a collection of objects
which are equivalent with respect to the training received by the system. In the
absence of idiosyncratic features, PROTOS2 uses the heuristic that an exemplar of
high family resemblance and mass will be a useful category model.

After the initial selection of an exemplar based on reminding, PROTOS2 uses

three techniques to establish a close match. First, knowledge-based pattern match-
ing attempts to coerce object features to conform to the exemplar, as described in

m , mm m mm m • •-A L

F

section 3.2. Second, unexplainable differences between the object and the exemplar
may index neighboring exemplars which match the object more closely. Difference
links between exemplars record the distinguishing features of each exemplar with
respect its closest neighbor [MCCA81, KOL083]. These links are learned when new
exemplars are added to a category. Third, PROTOS2 focusses interaction with the
teacher on the remaining unmatched features. If these techniques result in a strong
match then PROTOS2 presents the results to the user.

Sometimes an object to be classified causes multiple remindings. In this event,
PROTOS2 considers reorganizing the category structure in three cases:

1) remindings of multiple exemplars within a category. PROTOS2 considers
generalizing them to form a single exemplar of higher mass. If domain
knowledge and teacher assistance do not enable knowledge-based pattern
matching of the exemplars then PROTOS2 seeks additional difference links
between them.

2) remindings of multiple categories. PROTOS2 considers generalizing them to
form a superordinate category. If common functional features are associated
with category membership then PROTOS2 queries the teacher to ascertain
their generalization.

3) remindings of multiple exemplars across categories. PROTOS2 considers
forming an overlapping category containing the exemplars if the teacher can
explain their equivalence.

4. Current Work
Our first concern is the construction and validation of PROTOS2. Building

on our implementation of PROTOSI, we intend to construct PROTOS2 in nine
months. PROTOS2 will not be a fragile, prototype system. It will be verified
by domain experts teaching their heuristic classification knowledge with focussed
discussion of examples. The first domain that PROTOS2 will learn is clinical
audiology with the assistance of Professor Craig Wier of the University of Texas,
Speech and Hearing Department. We will compare the classification performance
of PROTOS2 with a hand-crafted, rule-based system that we have built using
EMYCIN (BARE84].

Our second concern is research on learning event sequences. Eve ',t sequences
direct the acquisition of data describing objects. For example, a clinician follows a
diagnostic script to gather patient data. This control information is not currently
learned by PROTOS, which assumes a fairly complete object description before
attempting classification. Preliminary research suggests that knowledge of event
sequences can be neatly interleaved with the PROTOS category structure represen-
tation of object information. Events are categor;zed by the (sub)goals they achieve
and objects are categorized by their function in enabling events. Psychological re-
search suggests that this larger context for object learning provides cohesiveness to

object categories and is learned first [NELS74]. In particular, this context provides
a functional core for object categories. This will allow PROTOS to build a richer
category structure with less guidance from a teacher.

5. Summary
The major contribution of this research is a theory of the acquisition and

application of domain knowledge for heuristic classification. The goal of building
PROTOS, an inquisitive learner which evolves into an expert, forces a thorough
analysis of three fundamental issues in concept formation. First, how are ill-defined,
'fuzzy" concepts learned and represented? We believe that induction is not the pri-
mary learning mechanism since classical and probabilistic concept representations
are inappropriate for most concepts. PROTOS adopts an exemplar-based repre-
sentation to support the inherent ambiguity of natural concepts. Second, what
functions must learned knowledge support? We believe that traditionally the task
of object classification has been supported to the exclusion of other tasks. The
range of functions that should be supported by concept formation includes sum-
marization of training instances, generation of examples of a concept, prediction
of unseen features of a new object, interpretation of 'fuzzy" examples, and expla-
nation. PROTOS supports these important applications of learned knowledge by
de-emphasizing the role of generalization in concept formation. Third, what are
the roles of the teacher and problem solver in concept formation? We believe that
learning from classified examples alone is an artificially difficult task. The role of
the problem solver is to guide the learner. The role of the teacher is to explain
problem solving failures. PROTOS is a learning apprentice system which acquires
the requisite knowledge for explanation-based, model-driven reasoning.

We are addressing the problems which result from relegating induction to
a minor role in learning. Induction compresses data. Without this compression
a problem solver can be overwhelmed. The primary problem solving activity in
PROTOS is identification of objects by constructing explanations of their similarity
to learned concepts. PROTOS focuses this effort on promising candidate matches
suggested by the reminding power of the new object's features. PROTOS supports
the recognition of relevent remindings by learning the importance of features with
respect to categories.

We are currently building PROTOS and intend to test its viability for the
task of learning heuristic classification knowledge. PROTOS will be instructed by
a domain expert and will evolve into an expert system for independent classification
and explanation.

REFERENCES

[BARE84] Bareiss, E.R, Bhatttacharjee, A., Rentmeesters, S.J. Help Understand
Hearing, an Expert System in the Audiology Domain. Unpublished re-
port of EMYCIN application, University of Texas at Austin, Computer
Sciences Department.

[BARE86] Bareiss, E.R. and Porter, B.W. A Survey of Psychological Models of
Concept Representation. Forthcoming Technical Report, University of
Texas at Austin, Computer Sciences Department.

[BENN85] Bennett, J.S. ROGET: A Knowledge-Based System for Acquiring
the Conceptual Structure of a Diagnostic Expert System. Automated
Reasoning 1:1 (1985), 49-74.

[BOOS84] Boose, J. Personal Construct Theory and the Transfer of Exper-
tise. Proceedings of the National Conference on Artificial Intelligence
(1984), 27-33.

(CLANS3) Clancey, W.J. The Epistemology of a Rule-Based Expert System: A
Framework for Explanation. Journal of Artificial Intelligence, 20(3)
(1983),.215-251.

[CLAN851 Clancey, W.J. Heuristic Classification. Artificial Intelligence 27,
289-350.

[COHE8S5] Cohen, P.R. Heuristic Reasoning About Uncertainty: An Artificial
Intelligence Approach, (Based on PhD Dissertation, Computer Science
Department, Stanford University), Boston: Pitman, 1985.

[DAV177] Davis, R. Interactive Transfer of Expertise: Acquisition of New In-
ference Rules. Proceedings of the International Joint Conference on
Artificial Intelligence (1977), 321-328.

[DEJo8 11 DeJong, G. Generalization Based on Explanations. Proceedings of the

International Joint Conference on Artificial Intelligence (1981), 67-69.

[ELLM85] Ellman, T. Generalizing Logic Circuit Designs by Analyzing Proofs
of Correctness. Proceedings of the International Joint Conference on
Artificial Intelligence (1985), 643-646.

F 172

[FLAN861 Flann, N.S. and Dietterich, T.G. Selecting Appropriate Representa-
tions for Learning from Examples. Proceedings of the National Confer-
ence on Artificial Intelligence (1986) (to appear).

[HILG751 Hilgard, E.R. and Bower, G.H. Theories of Learning, Englewood Cliffs,
NJ: Prentice-Hall, Vol. 4, 1975.

[KAHN85! Kahn, G., Nowlan, S. and McDermott, J. MORE: An Intelligent
Knowledge Acquisition Tool. Proceedings of the International Joint
Conference on Artificial Intelligence (1985), 581-584.

[KOLO83] Kolodner, J. L. Maintaining Organization in a Dynamic Long-Term
Memory. Cognitive Science 7, 4 (1983), 243-280.

[LANG84] Langley, P. and Ohlsson, S. Automated Cognitive Modeling. Pro-
ceedings of the National Conference on Artificial Intelligence (1984),
193-197.

[LENA77] Lenat, D.B. The Ubiquity of Discovery. Artificial Intelligence 9:3
(1977), 257-285.

[MAHA85] Mahadevan, S. Verification Based Learning: A Generalization Strat-
egy for Inferring Problem Reduction Methods. Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (1985), 616-623.

[MCCA81] McCarty, L.T. and Sridharan, N.S. The Representation of an Evolv-
ing System of Legal Concepts. Proceedings of the International Joint
Conference on Artificial Intelligence (1981), 246-253.

[MICH801 Michalski, R.S. and Chilausky, R.L. Learning by being Told and
Learning from Examples: an Experimental Comparison of the Two
Methods of Knowledge Acquisition in the Context of Developing an
Expert System for Soybean Disease Diagnosis. Policy Analysis and
Information Systems, Vol. 4, No. 2 (June, 1980), 125-160. (Special
issue on knowledge acquisition and induction).

[MIcH83I Michalski, R.S. A Theory and Methodology of Inductive Learning.
Appearing in Machine Learning, Michaiski, R.S., Carbonell, J.G., and
Mitchell, T.M. (eds.), Tioga Publishing, 1983.

(MINT84] Minton, S. Constraint-Based Generalization: Learning Game-Playing
Plans from Single Examples. Proceedings of the National Conference
on Artificial Intelligence (1984), 251-254.

_A- .

(MITC82] Mitchell, TNM. Generalization as Search. Artificial Intelligence, Vol-
ume 18 (1982), 203-226.

[MITc83] Mitchell, T.M., Utgoff, P.E., Nudel, B. and Banerji, R. Learning by
Experimentation: Acquiring and Refining Problem Solving Heuristics.
Appearing in Machine Learning, Michalski, R.S., Carbonell, J.G., and
Mitchell, T.M. (eds.), Tioga Publishing, 1983.

(MITC851 Mitchell, T.M., Mahadevan, S., and Steinberg, L.I. LEAP: A Learning
Apprentice for VLSI Design. Proceedings of the International Joint
Conference on Artificial Intelligence (1985), 573-580.

[MITC86] Mitchell, T.M., Keller, R.M., and Kedar-Cabelli, S.T. Explana-
tion-Based Generalization: A Unifying View. Machine Learning 1, 1
(1986).

[NELS74] Nelson, K. Concept, Word and Sentence: Literrelations in Acquisition
and Development. Psychological Review 81 (1974), 267-285.

[POPL82] Pople, H.E.,Jr. Heuristic Methods for Imposing Structure on
1l-structured Problems: The Structuring of Medical Diagnostics. Ap-
pearing in Artificial Intelligence in Medicine, Szolovits, P. (ed.), Boul-
der,CO: Westview Press, 1982, pp. 119-190.

[PORT85] Porter, B., Bareiss, R. and Farquhar, A. Learning Domain Knowledge
from Fragments of Advice. Appearing in Recent Progress in Machine
Learning, Mitchell, T. (Ed.), Kluwer Publ., 1985.

[PORT861 Porter, B. and Kibler, D. Experimental Goal Regression: A Technique
for Learning Problem Solving Heuristics. Machine Learning 2 (1986).

[QuIN86) Quinlan, J.R. Induction of Decision Trees. Machine Learning 1,1
(1986).

(RosC75] Rosch, E. and Mervis, C.B. Family Resemblance Studies in the Inter-
nal Structure of Categories. Cognitive Psychology 7 (1975), 573-605.

[ROSC78] Rosch, E. Principles of Categorization. Appearing in Cognition
and Categorization, Rosch, E. and Lloyd, B.B. (ed.), Hillsdale,

N.J.:Erlbaum, 1978.

-4

(ScELA82] Schank, R.C. Dynamic Memory: A Theory of Reminding and Learning
in Computers and People, Cambridge University Press, 1982.

[ScHA86] Schank, R.C., Collins, G.C., and Hunter, L.E. Transcending Inductive
Category Formation in Learning. The Behavioral and Brain Sciences
(1986) (to appear).

[SHOR76J Shortliffe, E.H. MYCIN: Computer-based Medical Consultations, New
York: Elsevier, 1976. (Based on PhD Dissertation, Computer Science
Department, Stanford University, 1974.)

[SMrr8l Smith, E. and Medin, D. Categories and Concepts, Cambridge: Har-
va.rd University Press, 1981.

[STFP861 Stepp, R.E. and Michalski, R.S. Conceptual Clustering: Inventing
Goal-Oriented Classifications of Structured Objects. Appearing in Ma-
chine Learning, Michalski, R.S., Carbonell, J.G. and Mitchell, T.M.
(ed.), Morgan Kaufman, Vol. 2, 1986, pp. 471-498.

[VAu84] Valiant, L.G. A Theory of the Learnable. Communications of the ACM
27, 11 (1984), 1134-1142.

[WI.s75] Winston, P.H. Learning Structural Descriptions from Examples. Ap-
pearing in The Psychology of Computer Vision, Winston, P.H. (ed.),
McGraw-Hill, 1975, pp. 157-209. (Based on PhD Dissertation, Com-
puter Science Department, Massachusetts Institute of Technology,
Cambridge, MA, 1970.)

[Wrrr53] Wittgenstein, L. Philosophical Investigations, New York: MacMillan,
1953.

P 175

Learning Expert Knowledge

by improving the explanations provided by the system

Yves Kodratoff
UA410 du CNR, Laboratoire de Recherche en Inf ornatique

Bftiment 490. Universit Paris-Sud
F -91405 ORIAY

SUMMARY

The word "Learning- is presently used in such a wide variety of meanings that it
attracts people that have different or even opposite interests.

This paper starts by a description of what Expert Knowledge is, as opposed to
casual knowledge.

Our main point is that Expert Knowledge is almost as much devoted to
efficiency as to explication. Here, we use explication in order to differenciate it
from the explanations needed in Explanation Based Learning (EBL).
In EBL, the system uses explanations in order to increas.- its knowled&e. The cx-

plications we want to obtain are those delivered by the system itself in order to
explain its behaviour to its user.
One can guess that EBL is very well suited to improve its explicatioas, but we

show that Similarity Based Learning (SBL) is also well able to deliver explca-
tions to Its users.

Such a system is certainly an Apprentice, in the sense T. Mitchell gives to the
word, but it must be even more, we shall call it an Explicatory Apprentice.
We show that an Explicatory Apprentice relies on the theorem proving abilities
shown by the learning system.

1 - INTRODUCTION

There seems to be a double misunderstanding on the expression "Machine
Licaring" (called ML in the sequel) that arises between, on the one hand, spe-
cialists in Artificial Intelligence (called AI-learnists in the sequel) and, on the
other hand, more psychology oriented people (called psy-learnists in te
sequel), and non Al oriented learnists (called NOT-AI-learriists in the sequel).

We shall attempt to define what are AI-learnists by qualifying them by two

features.

One feature concerns the topic they are working on.

?:76"

Most of the AI-learnists are working on problems that seem relatively simple
because

(first criterion)
there exists a well-known body of knowledge in the field in which- learning

takes place.
An expert in this field is able to explain to an other expert the reasons of his
choices. There may be some disagreement among experts, but the disagreement
is on the reasons rather than on the choices themselves.

Typically, Mathematics are expert knowledge, and bicycle riding is casual
knowledge.

In every day life, this defines expert knowledge, as opposed to casual
knowledge. In the context of k, we shall add one more criterion to this
definition.

The second feature concerns the way they are working on their topic

There have been recently a considerable emphasis given to the difference
between Explanation Based learning (EBL), and Simlarity Based Learning
(SBL). We disagree on the emphasis (not on the difference itself, which is quite

real) put on this difference. Our reason is that both EBL and SBL are linked to-
gether by a deeply similar approach to Machine Learning. In this paper, we shall
see that EBL is rather concerned by the explanation of the successes of a learn-
ing system, while SBL is more interested in the explanation of the failures of
such a system, But, contrary to what is often thought, we believe that both ap-
proaches look for some kind of explanations, using different techniques.

EBL usually uses goal regression technques, while SBL usually looks for recog-
nition functions obtained by a generalization from a set of examples and
counter-examples.

(second criterion)
Both EBL and SBL are characterized by the fact that their results are expressed

in the language of the expert him/herself.

As opposed to EBL and SBL that belong to Al-learning, there exists also an other
approach to ML, illustrated by statistics, and more recently by the connectionist
approach [Touretzky & Hinton 1985], where the aim is efficiency only, and
where no explanation can be expressed in the vocabulary of the expert.

Statistics do provide explanations to their results, but, typically, these reasons
are expressed in terms of "quadratic squares", or other statistical concepts
They are expressed in the vocabulary of the expert in statistics, not in the voca-
bulary of the expert of the field on which statistics are done.

All the EMYCIN like expert systems, that are well-know.n for providing bad ex-
planations of their behavior because the way they combine positive and negative
beliefs, nevertheless provide these explanatiorns in the vocabulary of the expert
in the field under study.

Definition.

We shall say that one is doing expert knowledge acquisition when the two follow-

r:21

ing requirements are fulfilled.
Firstly, the acquisition concerns a field which possesses a body of theory such

that the expert in this theory can provide explanation.
Secondly, the acquisition provides explanations of its behavior and uses the vo-

cabulary of the human experts.

When one of this condition is not fulfille'd, then we define the acquisition of
knowledge as casual knowledge acquisition.

Let us give three examples of .VOT-Al-learning, ordered by their distance to Al-
learning.

Riding a bicycle is an example of every day life casual knowledge, its learning
therefore belongs to casual knowledge acquisition.

A diagnosis system that would rely on thousends of clinical cases, store all of
them, and provide a diagnosis by a template matching mechanism does not pro-
vide explanations, therefore it belongs to NOT-A-learning Ir is similar to rote
learning vhich clearly does not concern A! specialists.

A diagnosis system that uses pure numerical techniques in order to perform its
clu.sterings, and generate its recognition functions, cannot give explanations in
the vocabulary of the expert.

There are here some (fortunate) shadows on the limits between A1 and NOT-
Al-learning, since the clustering algorithm may or may not include, as parame-
ters, some semantics of the aeld.
Michalski's "conceptual clusterirlg" [vichialski & Stepp 1983] is very typical of a

numerical technique that falls into Al-learning because it can provide some ex-
planations of its clusters in the expert's vocabulary.

The NOT-Al-learnists are interested in casual knowledge acquisition because
th:y do not mind explanations but efficiency.
The psy-learmsts mind explanations but they are interested in the way humans

actually store their knowledge, which seems to be very far from the way experts
explain their knowledge. Obtaining explanations from an expert being always a
painful process, one canguess that it is stored in some way that can be qualified
of i.asual, in the sense we give here to this word.

One necessary condition to the generation of explanations is that one is (i.e.,
the system is) able to prove that its actions obey some constraints -the quality
of the proof is an other matter that will be seen later.

As an introduction let us first see how proving things may be a first step towards
explanations.
We want also to illastrate -that, contrary to the "Explanation Versus Similarity
Based Learning" way of looking at Machine Learning, Similarity Based Learning
must also provide explanations, and needs some theorem proving.

EBL is born from techniquies-that are efficient on a very well defined domain.
For instance, the recently defined EBG (G for Generalization), [Mitchell & Al.
1986], requires both
- a complete theory,

P 173

- a definition of the concept under learning.
It would be usef'ul to be able to det9..e generalization in a domain w'ere the con-

cept to be reached is still unknown, or the theory still to be completed.
This has been done by Michalski [Michalski 1983, 198 , in his formalization of
SBL.
Our aim is to push forward this theory, and attempt to encompass both EBL and
SBL into it, by showing that SBL also should provide explanations of its generah-
zatioris.
We hope to reach two different goals.
The first is to show how a formal theorem prover can help in providing explana-

tions that improve the concept under learaing.
The second is to show how much these formalities are actually simple, and in

many cases, easy to use, once one disposes of a theorem prover The most wide-
ly available being the language PROLOG, we used its formalism in the sequel.

2 - NOTATIONS

In this paper, we shall use a PROLOG-like notation of the clauses.

2.1 - Representation of "static" knowledge

Let us use "All human beings are mortal ezc " as example
These natural language sentences may have several logical representations.
Let us assume that they can be represented by the theorem and the two asser-

tions
Vx [HUM.AN(x) => MORTAL(x)]

HUNMAN(SOCRA'rES)
MORTAL(SOCRATES)

Everyone is used to representation by IF ... THEN .. e:,:pressions, where the
theorem takes' the form

IF HUMAN(x) THEN MORTAL(x)
with an implicit umversal quantification.
Instead of writing ' IF HULMAN(x) THEN MORTA.L(x) '. one can write ' MORT.L(x)
IF HUMAN(x) ', this is what is done in a PROLOG representation.
In this paper, following PROLOG representation, this theorem will be written as

MORTAL(x) :- HUMAN(x)
equivalent to

MORTAL(x) IF HUMA.N(x)
where the :- 'is nothing but an' IF'.

More generally, a Horn clause has the form
A:-B, C, D.

which means, A is TRUE IF (B is TRUE, and C is TRUE, and D.,s TRUE,...).
A is called the conclusion of the clause, and B, C. D. ... are called the conditions
of the clause.
A clause without condition, i.e. a pure positive clause is often called a fact, or a
data.

P 27.9

A clause without a conclusion, i.e. a pure negative clause, is called a question

2.2 - Representing inference

it is clear that nothing special is brought by this representation as such. its
interest comes from the fact that an inference mechanism is included in it.
Given the clauses

(CI) MORTA.L(x) HUMAN(x)
(C2) HU M(SOCRATES) :-

In general. one should be able to resolve C2 and C1 , which means that one
should remark that C2 fulfills the condition of C1, x being intantiated by
SOCRATES
Using PROLOG representation implicitly says that this kind of reasoning, usually

called "forward chaining", will not be used. On the contrary, one will only use
"backward chaining", i. e. a question (i.e. a pure negative clause) will have to
match some conclusions and will generate new questions etc ... up to the
moment where all questions have been answered.
PROLOG uses a refutation strategy, therefore a question will be stated in the

form of a pure negation, as already defined.
The original question and all sub-questions have been answered when all of them
have been put in contradiction with some parts of the data basis. One then says
that one has derived the empty clause from the data basis and the question, i.e.
that the question is inconsistent with the data basis.

In our example, the only way to deduce something about Socrates' mortality, is
asking the question "Is Socrates mortal ?" by adding a pure negative clause in
the form

(CS) :- MORTAL(SOCRATES)

Clause Cs is a pure condition clause that matches the conclusion of C1, there-
fore generating the new question

(C4) :- HUMAN(SOCRATES)

Since C4 and 2 contradict each other, one concludes that Cs, which is the pure
negation of the possibility for Socrates to be mortal, is contradictory with the
other clauses, viz. C1 and C2. By the classical refutation proof argument, one
concludes that the following set is coherent

(C1) MORTAL(x) :- HUMAN(x)
(C?) HUMkN(SOCRATES)
(C2) MORTAL(SOCRATES)

This representation implicitly contains a theorem prover (reduced to Horn
clauses, with ore only pure negative clause). This is why we have chosen this
representation it contains no ambiguity on the way inference will be per-
formed.

3 - IMPROVING A GENERAU-ZATION

P7"80

In the foUcwins examples, we shall suppose that we reached so far a given state

of knowledge acquisition, and thac we are trying to improve it, by checkng the

present state of the learned recognition function against new examples or

counter-examples. When they do not fit together, the problem is then -o be able

to improve this recognition function.

Said in an intuitive way, one expects fro a recognition function to "recognize"
new examples and to "reject" new counter-examples.
Let us now give one possible definition for recognition and rejection.

We choose here a quite intuitive way of defining these words. More details have
been given elsewhere. This deftnition has also been extensively used by J. Nicolas

[Nicolas 1986].

The reader is asked to accept these deftnitions as temporary hypotheses : other
definitions would lead to other proofs, but the essential ste p that we want to

illustrate here, viz. how a proof can be the basis for an explanation, does not

depend on these defitions.

Let E, CE, and f(x) respectively be an example, a counter-example, and a recog-

nition function.

3. 1- Recognition of an example

One says that a function f(x) recognizes an example E when there is no con-

tradiction to assert that both E and x [f(x)] are TRUE

We say that it is an "intuitive" detinition because of the following argument.
Suppose that f(x) is a recognition function in the usual meaning of the word, i.e.

E is an instance of f(x), i.e. there is an instance of ' x ', say Ix <-- A] such that
fkA) = E.
Then, if there is a contradiction between E and 3x [f(x)], there is no contradic-

tion between E and -3x [f(x)].
But this is to say that E and Vx [-f(x)] is coherent, i.e. that f(A) and Vx I -f(x)]

is coherent, which is a contradiction.

Example 1.
Let us suppose that we have so far obtained the following recognition function

f I(x, y) = SPHERE(x) & RED(y)

which means : "there are two objects, one is a sphere, the other one is red".
Suppose that a further example is given

E, = SPHERE(A) & RED(A)
where 'A 'is the name of an object which happens to be a red sphere,
then E, is clearly an instance of f 1(x, y) since the substitution

a, = Ix <- A. y<- Al
is such that

a, f I(x, y) = El.

One can therefore prove that Ei => 3x y [f i(x. y)] since the set of clauses

C, : SPHERE(A)
C2 : RED(A)
C3 : : SPHERE(x), RED(y)

is contradictory.
SPHERE(x) in C3 reso&'es with C1, and RED(y) in C5 resolves with C2 . This

shows that IC 1. C2, C31 is contradictory. One usually says thar C1, C2, C31 leads
to the empty clause with 'he suasitgtion at above.

Clause C' is equivalent to Nvxy -[f lI(x, y)], which is the ne&ation of 3x y (f I(x,
y)]1

The above example illustrates why one can use the definition of 'recognition" we
just gave, but still does not explains its use, since the direct proof by substitu-
tion is possible.
It may happen that the substitution is very hard or impossible (as example 2

shows) to find because, in order to make sure that E is an instance of f(x), one
must use semantic properties of the micro-world one is learning in.
In that case, it may be easier to prove that one can deduce 3x [f(x)] from E.

Example 2.
Suppose now that the recognition function is

f 2 (x) = ELLIPSOID(x) & RED(x)
which v- :ans that we have memorized that "there is a red ellipsoid" in all the
scenes we are learningfrom.
Suppose that we are &iven a further exemple

E2
= SPHERE() & RED(F)

where 'B 'is the name of a red sphere.
Since ELLIPSOID and SPHERE dc not match, the proof by substitution is use-

less.
Suppose now that the semantics of the micro-world where learning is taking
place are such the follo wins theorem is known

T, .- 'vx [SPHERElx) => ELLIPSOID(x)]
We shall attemp" to prove that E2 > jx [f2(x)], and add TArt in our knowledge
base. This reads

C4 : SPHERE(B) :
C5 : RED(B)
Ce : ELLIPSOID(x) :- SPHERE(x)

C :. ELLIPSOID(x), RED(x)

C? resolves -with C8 , leading to the new clau-se

ce ." :- SPHERE(x), RED(x)

and C8 resolves with C4 and C5 to lead to the empty clause with the substituzion
Ix <- B1.
Therefore, E 2 is recognized by f 2().

3.2 - Rejection of an example

One says that a function f(x) rejects an example E when, asserting that both E
and 3x [t(x)] are TRUE, is a contradiction.

Intuitively, it is clear one want to define the case where a recognition function
rejects a counter-example CE. It follows that CE and 3x [f(x)] should be contrad-
ictory. Therefore, CE and the negation of x [f(x)] should not be contradictory,

P 182

and CE and Vx [-f(x)] should not lead to a contradiction.

Example 3.
Suppose that the recognition function is

fs(x) = SPHERE(x) & RED(x)
and that

CEs = SPHERE(C) & RED(D)
is a counter-example to f 3.
Clearly, CES is not an instance of f a since x cannot be substituted by both C

and D
Using the above formalism, one checks that the system of clauses

Cg.: SPHERE(C)
CID: RED(D)
Cn : :- SPHERE(z), RED(x)

does not lead to the empty clause since, if one resolves CI1 with C9 , one obtains

CIO : RED(D) .'

C1 2 : '- RED(C)

because 'x 'has been instantiated by ' C 'du-iing the resolution. C10 and Cle
cannot be reduced since 'C 'and 'D 'are different constants.
Since CI1 is the clause form of Vx [-f 3 (x)], this proves that CEs is a counter-

example for f 3(x).

All the above illustrates our definitions and the proof procedure but is no: very
significant as explanations generator. The reason is that'the definitions work weU
in these cases, therefore the expecred success or failure of the proof that E (
respectively CE) allows to deduce (resp. not to deduce) the theorem 3x if(x)],
just "explains" why E (resp. CE) is an example (resp. a counter-example).

3.3 - Improvment of a formula by an explanation of its success to recognize a
new example.

The problem is to explain why the proof succeeds.
This process can be interesting in two cases.
First case. It may be that the recognition function is too much "hairy", i.e., it

contains irrelevant information that does not harm the recognition of the Ziven
example, but could be harmful in other situations.

For instance, imagine a recognition function for 'man 'that contains ap redi-
cate 'beard 'taking the value TRUE when the man has a beard
It may be that only bearded men have been seen so far by the system, which

recognizes 'man 'only if its description gives the value TRUE to 'beard '
- Given a complete theory of 'man ', in this case, a detailed description of what

are secondary sexual features,
- Given a complete description of a bearded man,
the system should be able to prove that the predicate 'beard 'is not necessary

to assert that this bearded man is actually a man, because it is a secondary
feature only.

As this example shows, since irrelevant information is dropped, another conse-
quence is that some generalization is performed on the given formula.
T7is is the topic of "goal regression" [Waldinger 1917, Nilsson 1980], and of

P 183

Explanation Based Generalization [Mitchell & Al. 1986].

We shall use here a PROLOG version of the "safe-to-stack" example, ta en from
[Mitchell & . 1986].

The PROLOG program that contains the information relative to the fact that
BOX, can be safely stacked on ENDTABLE, is contained in the following set of
clauses
Most clauses are a direct rewritting of those in [Mitchell & Al. 1986].
Three differences must be pointed at.
The first difference is that we use integers, therefore we multiply by ten the

values given in Mitchell et Al. paper.
The second difference is tha- the "ISA" links are dropped. This would have to be

expressed as types in a typed PROLOG, and typing PROLOG is not our present to-
pic.
The third difference is that the default value is given in clause C12 as a "normal"

value. The fact that it is a default value is expressed by clause C11, just before
C1 z. Clause C11 computes the weigths and, only if it fails to compute, wL1 allow to
give its default value to the weight of an endtable.

C ON(BOX,. ENDTABLEI)
C2 COLOR(BOX, RED)
Cs COLOR(END TABLEI, BLUE)
C4 VOLUME(BOXI, 10)
C5 DENSI7Y(BOX, 1)
Cd FRAGILE(E:VDTABLEI)
C7 OWN.NER(ENDTABLEj, CLYDE)
C8 OWNER(BOX,, BONNIE)
Cg SAFE-TG-STACK(x, y) - NOT FRAGILE(y)
C, 0 SAFE-TO-STACK(x, y) - LIGHTER(x, y)
C, I WEIGHT(x, w) .- VOLUME(x, v), DENSITY(x, d), w is v*d,
C12 WEIGHT(ENDTABLE,, 50)
C13 LIGTER(x, y) .- WEIGHT(x, w), "*-EIGHT(y, w2), LESS(wi, w 2)
C14 LESS(x. y) - x <

C15 SAFE-TO-STACK(.BOXI, ENDTABLEI)

The pure negative clause C15 asks the question wether it is safe to stack a given
BOX, on a given ENDTABLEI.

The proof proceeds as the following trace shows. This trace is provided by most
PROLOG interpreters.
The comment ' Call ' means that the predicate have been used as a question to

the system.
The comment' Exit ' means that the the predicate (with the instances in the

Exit') has been proven TRUE.
The comment ' Fail ' means that the predicate has been proven FALSE.
The comment 'Back to ' means that back-tracking is taking place.
The numbers to the left are those provided by the compiler, we have put on the
right the level of embedding they actually represent.

P 184

For instance, Call ' NOT FRAGLE(ENDATBLEI) is m'dexed by ' 2 ' and call
LIGHTER(BOX1 . ENDTABLE1) is i-a, exed by' 4' in the computer output. Actually,
they are at the same level of embedding and are labelled respectively 21 and 22
on the right.

I Call: SAFE-TO-STACK(BOXI, ENDTABLE)
2 Call: NOT FRAGILE(END TABLE,)
3 Call: FRAGILE(ENDTABLE)
3 Exit: FRAGILE(ENDTABLE) 21
2 Back-to: NOT FFAGILE(END TABLE,)
-2 Fail: NOT FRAGILE(ENDTABLE1)
-4 Call: LIGHTER(BOXI, ENDTABLE)
-5 Call: WEIGHT(BOX1 ,w 1)
=8 Call: VOLUME(BOXI, v) .
-6 Exit: -VOLUME(BOX, 10) . 41
'a Call: DENSITY(BOXI, dj) 31
•8 Exit: DENSITY(BOX, 1) 42

-6 Call: i', is 10*1 _

-6 Edt: 10 is 1014
-5 Exit: WEIGHT(BOX", 10)
5 Call: WFJGHT(END TABLE 1 , 1-) -Z2
"6 Call: -VOLUME(ENDTABLE, v)
"£ Fail: VOLUME(ENDTABLE 1 , v2) 32
"5 Back to: -WEIGHT(ENDTABLE,, w2)
5 Exit: WEIGHT(ENDTABLE,, 50)
-5 Call: less(10, 50)
:6 Call: 10<50 33

6 Exit: 10<50 44
.5 Exit: less(10, 50)
4 Exit: -lighter(BOX1 . ENDTABLEI)
I Exit: :AFE-TO-STACK(BOX,, ENDTABLE)

Let us-now analyse the above proof and show that it ac:ually gives a set of expla-
nations why it is safe to stack BOX on ENDTABLE 1, which, in the rest of this
section will be abreviated by "explanation".

A level always begins with a question, labelled as a ' Call '. When it succeeds, it
-eds wtb an ' Exit '. 7'e exit contains the reason why the call succeeded. This
why aoe can say that each level provides an "explanation", that becomes more
annotte refines as ofe goes down the levels.

Level 1 is the most outside. in a sense it says
"it is-safe to stack BOX, on ENDTABLEI" because I have proven it just now. It is

the most superflcial level of explanations, the children use quite often

jvel 2-contains sub-level 21 and sub-level 22.
Sub-bevel 21 is a failure sub-level : it tells that "NO7 FR r- 1,E.E has nothing to do

with 'the explanatiod". We disregard it now, but one must be aware that, when
explanations for negative features are looked for, then their explanation is given
by the failure sub-levels only.
As anr exercice, the reader can analyse the trace obtained by.giving the default
vatuze ' 10 'to the 'weight of ENDTABLE1, and ask the question

NOT SAFE-TO-STACK(BOX1 , ENDTABLE 1)
The ns-wer is then also 'yes 'but the analysis of the .-zplanations -why it is not

P 285

safe to stack BOX, on ENDTABLE is completely diffe'ent.
$ub-level 22 provides the "explanation" :
"it is safe to stack BOX, on ENDTABLE," because BOX, is lighter than. ENDT-

ABLE 1".

I.-vel 3 contains three sub-levels 31, 32, and 33. The explanations obtained from
each one must be conjuncted to obtain the "explanation".
They provide the "explanation":
"it is safe to stack BOX, on ENDTABLEI" because
-the weight of BOX, is 10, the weight of ENDTABLEI is 50, and 10 is less than 50.

flnecan be tempted to generalize at once by saying that the weight of BOX, is
w-1, the weight of ENDTABLE, is w2, and w, is less than w2 This is not allowed by
EBG that says that one can generalize further only if the numerical values come
from example data. If some numerical valuethere is Issued from theory data,
then-this value should be kept as such.
In this case, the default value : the weight of ENDTABLEj = 50, is part of the
theory data, not of the example data.
Am ether way to look at this is to say that one must keep them when there is no
deeper explanation to the numerical values. In this case, there is no deeper
explanation to the fact that the weight of E.DTABLEI = 50, since sub-level 32
contains no inner sub-level. Therefore, this value will be kept in the final result.

Sub-level 31 says that the weight of BOX, is 10 becau-se its volume is 10, its den-
sity is 1, and because 10*1 = 10. In this case, the numerical values are issued
from-the example and can be generalized.
The value of the volume is called vI, the value of the density is called dj, which
gives-the "explanation":
The weight of BOX, is wl = v *dj.

Sub4evel 33 contains an explanation given by 44 This explanation is disregarded
because it uses a function, like <, of low level. Deciding what is at what is not
"low level" function is a quite easy decision that must always be taken before-
hand.

Applying this generalization into the explanation of level 3 (which is the last
'"mepLanation" found) leads to the final "explanation"
"it is safe to stack BOX, on ENDTABLEI" because
the weight of BOX, is w, = vj*dj, the weight of ENDTABLE," is 50, and v is
*A fOban 50.

The process we describe here, is nothing but a paraphrasing of EBG, with two
differences with the original paper.
Oxr presentation has a stronger theorem proving orientation.
Instead of forcing the variables down to elementary acts, we force the con-
stanm up to some level where they can be generalized In an implementation,
EBG is the correct way to realize the transmission of the relations among vari-
ables. We felt neverthiess easier to understand why this process is an explana-
ion Gt something when presented thc other way round.

DeJoig and " oney recently _presented a discussion of EBG. We shall not com-
ment here on their criticism [DeJog and Mooney 1986] except on the one con-
cernaxag the case where two or more explanations are possible. This point will be
detailed in section 4, since it arises also in the context'of explaining the failures.

P 136

At any rate, as useful as it is, on must stress that goal regression hardly pro-
vides the possiblity for a progressive improvment of the quality of :he explana-
tions. This will be possible only when the theory itself will be improved : explana-
tionas for failures are necessary to improve the theory.

3.4 - hmprovment of a recognition function by an explanation of its failure to
recognize a new example.

Let us suppose that f(x) cannot recognize a new example E. This means that one
cannot decduce 3x [f(x)] from E, therefore the proof that E and Vx [-f(x)] fails,
i.e. one cannot deduce the empty clause.
The problem is now to explain why the proof fails. This process is usually
difficult to implement, as the foUowing example shows,

Example 4
f 4(k) = SPHERE(x) & RED(x)

and suppose that a new examp!e is
E4 . SPHERE4E) & RED(F)

One fails to prove that one can deduce Jx [f 4(x)] from E4, as the following set
of equivalent clauses shows.

C1s: SPHERE(E)
C14 RED(F)
C:- SPHERE(x), RED(x)

In example 3, CE3 was considered as a counter-exam ple to f3, therefore the
failure of the proof was just normal. Now we must find an explanation to the
failure. This is more or less equivalent to find a new function, f 4 (x), that is "the
closest possible" to f 4. but allows the proof to succeed.

The failure can be issued from two very different reasons. Either there is a
problem with the predicates themselves (one cannot find a predicate in the con-
clusion of the clauses (further called conclusion-predicate) to match an other
one in the conditions of the clauses (further called condition-predicate)), or
there is a problem with the substitution.

Example 4 illustrates the second case. Both condition-predicates SPHERE and
RED can match their conclusion counter-parts in C13 and C14, but 'x 'must be
instantiated either by 'E 'or by 'F'.

Imagine that, instead of C1. , the above set of clause would contain instead

C',a : :- SPHERE(x), RED(y), RELIGIOUS(z)

Then the variables 'x 'and 'y 'could be correct-'y instantiated by E and F, but
no conclusion-predicate could match 'RELIGIOUS '. This would then become the
reason of the failure of the proof.

When the reason of the failure of the proof is a substitution problem, then one
has to introduce variables at the right places to insure the success of the proof
with. the new generalization.
When the reason of the failure of the proof is a predicate problem, it can be

easily found in some cases where one only misses, in the middle of many others
that match. Nevertheless, in general, it is very difficult to expla.n the failure.
When the reason of the failure of the proof nxes substitution and predicate

problems, then finding the reason of the failure becomes more or less untract-
able.

This why we have developed an algorithm, called AGAPE. and described else-
where [Kodratoff 1983, Kodratoff & Al. 1985, Kodratoff & Ganascia 1986], the role
of which is to trace down the possible failures in a given set of examples. The
central mechanism for this has been called Structura Matching : it preserves as
much as possible the structure of the examples before attempting any generali-
zation.

3.5 - A simple example of Structural Matching (SM).

Consider the two following examples.

AE, : (: !. E2: /O, D

Using his intuition, the reader may notice that he can find two different general-
izations from these examples.
He sees that either

- there are two different objects touching each other, and a small polygon

- there are two different objects touching each other, one of them is a square.

Both generahzations ire true and there is no reason why one of them should be
chosen rather than the other. We shall now see that one of the interesting
features of SM is that it keeps all the available information, and therefore con-
structs a formula containing both the above two "concepts".

The examples can be described by the following formulas

E, = SQUARE(A) & CERCLE(B) & ON(A, B) & SMtALL(A) & BIG(B)
E2 = TRIANGLE(C) & SQUARE(D) & TOUCH(C, D) & SMA"(C) & BIG(D)

Let us suppose that the following hierarchy is provided to the system.

FORM

CONVEX

POLYGON ELLIPSOID ...

SQUARE TRIANGLE ... CIRCLE

together with the theorems

vx Vy [ON(x. y) => TOUCH(x, y)]
Vx Vy [TOUCH(x, y) <=> TOUCH(y, x)]

This taxonomy and the theorems represent our semantical knowledge about the
micro-world in-which learmng is taking place.

The SM of El.and E2a proceeds by transforming them into equivalent formulas
Ej and E , such that EL is equivalent to El, and E is equivalent to E2 in this
micro-world (i.e., taking into account its semantics).
When -the process is completed, Ej and E2 are made of two parts.
One is a variabilized version 6f El and E2. It is called the body of the SMized for-

mulas, WhenSM succeeds, the bodies of Ei and E2 are identical.
The other part, called the bindings (of the variables), gives all the conditions
necessary-for the bodies to be identical.

In our example,

Body of El =
POLYCON(u, y) & SQUARE(x) & COiNVX(v,, v2, z) & ON(y, z) & TOUCH(y, z) &

SMALI(y) & BIG(z)
Bindings of El =
((x = y) & (y P z) & (x s z) & (vI = ELIdPSOID) & (v = CIRCLE) & (u = SQUARE)
& (x = A) & (z = B))

Body of E2 =
POLYGON(u. y) & SQU.ARE(x) & CONVEX(vj. v2, z) & TOUCH(y, z) & SMIALL(y) &

BIG(z)
Bindings of E'
((x 1 y) & (y s z) & (x = z) & (vI = POLYGON) & (v 2 = SQUARE) & (u = TRLAN-

GLE) & (x =D) &(y =C))

The algoi-hm that constructs Ej and E is explained in [Kodratof ll83,
Kodratoff & Ganascia 1986, Kodratoff & Al. 1985].
The reader can check that El and E' are equivalent to El and E2.

El and E contain exactly the information extracted from the hierarchy and
the theorems which is necessary to put the examples into SM.

For instance, In E', the expression ' (POLYGON(u, y) ' means that there Is a
polygon in El, and since we have the binding (u = SQUARE), it says that this
polygon is a square, which is redundant in view of the fact that SQU.ARE(x) & (x=
y) says that x is a square and-is the same as y. This redundancy is not artificial
when one considers the polygon in Ea which is a TRLA-N\CLE.

Once .his SM step has been performed, the generalization step becomes trivial:
we keep in the generalization-all the bindings common to the Snaized formulas
and drop all those not in common.

The gener-aliz*.ion El and Ez is therefore

Eg : POLYGON(u, y) & SQUARE(x) & CONVEX(v 1 , v2, z) & TOUCH(y, z) &
SMALL(y) & BTG(z)
with bindings ty s z).

AI

In "English", this formula means that there are two different objects (named y
and z), y and z touch each other, y is a small polygcn, z is a big convex, and
there is a square (named x) which may be identical to y or z.

AGAPE works on a given set of examples arid is not.tuned to incremental learn-
ing. Nevertheless, elementary changes would make it work incrementally, as
long as the structural matching is preserved. An explanation of each change due
to a new example would then be possible.

In other words, it would not be too difficult to include AGAPE into an apprentice
system as long as the "good" structural matching has been found with the f.rst
set of examples.
In that case, the explanations provided by AGAPE would be of increasing quaLty

as the number of new examples increases.
On the contrury, if a new example difers widely from the present generaLza-

tion, then a completely new generalization process would have to take place,
thus providing no explanations..

3.6 - Improvment of a recognition function by an explanation of its failure to
reject a new counter-example.

Let us suppose that f(x) recognizes a new counter-example CE This means that
the proof that CE and 'Vx [-f(x)] succeeds instead of failing as it should if :he
cou.nter-example would be rejected.
Explaining a success, if not easy, is usually less compl:cated than explaining a

failure. This is why we think that a method can be devised for incremental learn-
ing in this case.

Example 5
Suppose that the recognition function is

S5 (x, y) = SPHERE(x) & RED(y)
and that

CE5.- SPHERE(G) & RED(G)
is a counter-example to f 5.
Writing it as clauses, one sees at once that one cannot deduce -f 5 from CE,.

Cie: SPHERE(G)
C1 7 . RED(G)
C18 : :- SPHERE(x), RED(y)

leads to the empty clause u.ith the substitution jx <- G, y <- G1.

As one can see the success of the proof is easy to explain : any substitution that
leads to the result is a kind of "explanation".
In the example, but also in general, the simpler way to change f5 in order to
obtain a new function .65. that forbids the success of the proof, is to forbid the
substitutions that lead to a success. Since a substitution can be represented by
an equality, the new function will be obtained from the old one, by adding the
condition that its variables do not take the values as in the substitution

From f and the new counter-example CE5, one obtains the new recognition
function

P 190

f5(x. y) = SPHERE(x) & RED(y) &[[x 0 & [y = 1]
which means that one must forbid to ' x' or to y' to take the value ' G

Al that can be felt as hugely far from anything that will learn incrementally.
and even further from a system that improves its explanations. The foUowing will
show how much this feeling is wrong.

3.7 -Relative role of examples and counter-examples.

The examples express the fact that there exists this or that property common
to the examples. On the contrary, the counter-examples express the fact that
none of the examples possess this or that property. Therefore, the examples
must verify the theorem obtained by negating the one which best expresses the
properties of the counter-examples.
If a more general theorem is chosen, say T", which does not imply all the other

theorems that can be deduced from the counter-examples, then there could ex-
ist some examples, say xc, for which

-[(xo) => -T"(xo)]
even if the "correct" fc(xc) is such that

[Jxo) => fc(X0)]

We reach the conclusion that examples allow us to find recognition functions
and the counter-examples allow us to find theorems that must be verified by all
TRUE instances of the recognition function.

If 3x [fc(x)] is this best theorem dediced from the counter-e:xamples: then the
instances of x that belong to the examples must verify -] [fc(x)] That is to
say,

one has to prove the following
Vx 11(x) => -fC(x)]

in order to verify that the domain of the examples and the domain of the
counter-examples do not overlap.
Note that this formula is valid only for an f(x) which is supposed to be the "best"
one, i.e. "the" one that characterizes the domain of the examples
On the contrary, it will be possible to check this formula for any property, f dx)
of the counter-examples.
An other remark is that one must not be suprised when "f (x) does not depend
on x. This is always the case when one dispose of one counter-example only,
since no variablization can have taken place.

For the remainder of this section, let
f 8(x, y) = SPHERE(x) & BLACK(y).

Suppose that the counter-example is
CEG = [BLACK(A) & SPHERE(A)].

the best theorem is CE itself, the theorem that must be verified by The ea4m-
ples is - CE6 ,i e.

-[BLACK(A) & SPHERE(A)]
One must attempt to prove

Vz', ,yf[[BLACK(x) & SPHERE(y)] => - '3LACK.A)&7"',,,,
one AiU, of course, fail.

We have already described what must be done if the proof succeeds, we shall
skip it here.

AD-A173 886 ~0pJGg NK INT3IA flUT ND IN /3

UNCLASSIFIED ~It U %QNL A '

\~I.252.2

MICROCORY LSO
1
IIO ILSI CHARI

P 191

If the proof fails, this means that the courter-examples intersect the examples,
one must attempt to construct a new generalization f(x) which implies -fc(x).
We shall now propose a method for doing so It uses an attempt to prove a par-
ticular theorem, henceforth called Th. The reason why Th is chosen cannot be
understood beforehand, the reader is asked to wait a little before he can see the
interesting consequences of its proof.

Th: 3x x) => f ()].

Let us attempt to prove that -x., yj [BL,4CK(x) & SPHERE(y)] => [BLACK(A)
& SPHERE(A)]]

There are three cases.

First case: Th is not provable.

The reason may be that Vx [f(x)=> -fC(x)] has been proven. in that case, the
new property of the counter-exampes-actulally does not cover any example, and
nothing has to be changed.

It may also be so we are unable to prowe both Th and 'V'x (f(x) => -fC(x)].
This is the failure case, where nothing cand be learned. It shows that we ignore
an essential property of the domain, but dces not tell where to find it.

Second case : Th is provable and reduces to the empty clause.

We prove it by refutation, attempting -to prove that one can deduce the empty
clause from -Th. Since Th is provable, ;one will succeed and each success
delivers a substitution a which is an instarxe of the substitutions to be made to
x in order to verify Th. By carrying out all the possible proofs, in the case where
there is a finite number of them, or, -in infinite cases, by inventing a function
that covers all tle cases (this part is not emphasized here but is a difficult part
of learning), one defines the set of all the xj such that Ax) => fc(x). Let us
call P, this set .

We now claim that
Vx [A Dx) & -x E POI => -fc(x)].

In other words, we have found thef"(x) we have been looking for.
Proof.
Since x belong to the set for which the implication Ax;) => fc(;t) is FALSE and

m all the cases where f(x) is TRUE, it follows that fc(x) is FALSE.

In order to prove
y [[BLACK(x) & SPHLWE(y)] =C [BLACK(A) & SPHERE(A)]]

ue shall try to derive the empty clazsefrom its nesation - Th.
As usually [Kowalski 1979], the theorem is transformed into clauses asfollows.
-I y [BLACK(x) & SPHERE(y)] => [BLACK(A) & SPHERE(A)]]=
- [BLACK(x) & SPHERE(y)] v ,JBL4CK(A) & SPHERE(A)]]=
Vx y [[BLACK(x) & SPHERE(y)] & -1[3LA CK(A) & SPHERE(A)] =
the set of clatses
BLACK(x):-
SPHERE(y)

BLACK(A), SPHERE(A),

~P 192

This set generates once only the empty clav.se uith the substirmtion
P = I x<-Ay<-A J.
It follows that t*e set x-A. y=A I = P, is the set for which Th is valid.
As proven above, conjuncting -[(x=A) & (y=A)] to [BL4CK(x) & SPHERE(y)]
will give the lookedfio generalization .-

I BLA CK(x) & SPHERE(y)] & [(x * A) v (y 0.A)].
This is the generaeization which keeps as much as possible what has been

deduced from the examples and excludes the co unter-examples,
It shows that from one counter-example alone no too much subtle ;nformaion
can be deduced.

One should be aware that this is the best particularization that can be made
from the counter-examples. If one attempted to derive a more general law, one
could over-Seneralize and lose some vital informatioa.

In case one adds the following further counter-example
CE 7 = BLACK(A) & SPHERE(D)

then one rnwst be able to deduce that the generalization from
f a and CE 8 andCE7 vnust be

[BLACK(x) & SPHERE(y) & (x A A)].
which is the restt of our method.

Third case :Th is provable but does not reduce to the empty clause.

One must then analyse the failure. Since we suppose that we use resolution to
deduce the empty clause from -Th, it follows that the failure w d! be caused by a
subset of irreducible -clauses that do not reduce to the empty clause Let us call
LO(x) (Left-Over) this.subset.
We shall not give here many details about LO(x), nor comment on the fact that

it-is not unique in geaeral.
Section 4 is devoted to an analysis of this case.
Let us suppose M tlis section that it is unique.
Consider the expre.sionAx) & -LO(x) and attempt to prove
Th': 3x [fx) & -LC(:c) I => fc(x)]
Its negation is
Vx [[Ax) & -LO(x) -fc(x)I and, since LO(x) is precisely the left-over of the

resolution of Vx [f(x) & -fc(x)], one will deduce the empty clause from it.
Let us now call P the set of values that verify Th'.

Drawing a conclsiob from the above reasoning requires us to take a somewhat
closerlook at LO.
Due to the conjunctwe form of the theorem Vx [A(x) & -LO(x) & -fc(x)], one
can always assume that each clause contains atoms that originate from and only
from J(x) or from and only from fc(x). It follows that LO(x) has the form LO'(x)
& -LO"(x) where

Xx) =f(x) & LO'(x) and fc(x) = f <X) & (x)
Diring the proof of Mb', LO' (respectively -LO") resolves some preicates of
-fc (respectiveiy f).
It follows that from the proofs of 3x [[Vx) & -LO(x) I => fc(x)] one can
deduce that
Vx [Lj(x) &k - [x e Pi]l => -f (x)] by the s. me reasoring as above.

Let us now use the twc following trivialities
from A => C, deduce that A & B => C

ftcmA => C, deduce that A& D => C v D

P 119,

in order to find that
Vx [[JLx) & -[x e P, & -LO"(x)] => -fc(x)

which theinteresting form we wanted to construct.

The finalideflaition we can now give for the best formula that can be learned

from tormula f(x) and counter-examples generalizing to fc(x) is.:

[f(x) & -'"(x) -[X P] J].

This is the correct recognition function.

We now describe two simple examples showing that our definitions contain the
well-known intuitive learning behaviour when the examples and counter-
examples mismatch by a predicate.

First .case : the generalization from examples contains more predicates than
the count er-example.

Recall that f sfx, y) is : BLACK(x) & SPHERE(y), and suppose that the counter-
example is now BLACK(A).
The attempt coprove

3xy [BLCK(x) & SPHERE(y)] > BLACK(A)]
fails wpith SPHERE(y) as LO = LO'
Conjuncting -LO to f (x, y), one attempts now to prove

3x y [[BLACK(x) & SPHERE(y) & -SPHERE(y)] => BLACK(A)], i.e
that
-3x y [BL4CK(X) => B L4cK(4)]
contains a cortradiction. The substitution Ix <- A, describes the domain -where

this cntradiction holds, and it follows that
Vx y [[BLACK(x) & SPHERE(y) & -SPHERE(y) & (x s A)] > -BLACK(A)].
This shows that the fn,d generalization is

[.BLACK(',) & SPHERE(y) & SPHERE(y) & (x A)]
[BL4CK(x) & SPHERE(y) & (x ; A)]

Second case ::the generalization from examples contains less predicates than
the counter-example.

Let tre generdlization from examples be f 7(x) = BLACK(x), and the counter-
example be SPHERE(A) & BLACK(A)
The Lft-overis -SPHERE(A) = -LO", conjuncting its negation to BLACK(x)

allows us t fln the empty clause with Ix <- Al
It follows that the best recognition function is

BLACK(x) & -SPHERE(A) & (x s A)

4 -iPRDVING THE EXPLANATIONS

4.1 - Ikproving the quality of the generalization

Instead of applying the above techniques to the recognition function and a
counter-example, one car also attempt to compare it to a generalization of the

Pr -

P 194

- 20 -

counter-examples.
Since their generalization will be used in order to e:pell some information from
the recognition function of the examples, it may be that the modified recogni-
tion function no longuer recognizes allthe examF.es, after its modification by an
over-generalization of the pies.
It is therefore extremely important to avoid over-generalizing the counter-
examples.
Structural Matching, the role of which is to avoid such kind of over-

gneralization. is important when generalizing examples, but it is even more im-
portant when generalizing counter-examples.

Cbnsider again
f = BLACK(x) & SPHERE(y).
Consider now the case where one wants to find the correct generalization asso-

ciated to fa and
CEa = BLACK(A) & SPHERE(A)
CE9 = BLACK(B) & SPHERE(B).

7he recognition function deduced from CE8 and CE9 is
fr(x) = BLACK(x) & SPHERE(x)

In this case, 7h is
3x y [[BLACK(x) & SPHERE(y)] => [BLACK(x) & SPHERE(x)]]

wbich is TRUEfor the unique substitution Jy<-x, therefore P, is characterized
by x = y and -[x E P,] if z s y. It follows that the correct generalization is, in
this case,

[BLACK(x) & SPHERE(y) & (x ? y)].

On can notice that over-generalizing CE, and CE3 to BLACK(x) & SPHERE(y)
for instance nould lead to total disappearance of the recognition function, a
case clearly difficult to overcome by furrher modifications.!

42 - hmprovment of the quality of the proof

As seen in preceding sectioas, an explahation procedure can always be attached
to.a proof of recognition or rejection.
There are often several possible proofs. Each of them Adl provide new different
explanations.
Explanations relative to successes will enrich the recognition functions.
Explanations relative to failures will allow modifying the data basis. For in-
stknce, in the example of section 3.3, the default values of an ENDTABLE can be
modified in case the system fails to recognize that a given BOX, can be stacked
on-a given ENDTABLE1.
In a real situation, where we will have to handle numerous explanations, one will
be-able to modify the data theory by learning.
Tke following ad'hoc examples will illustrate the probl.ems met during this pro-
cess.

42.1 - The system generates several explanations from one example

Sappose that, as in section 3.3, it finds that BOX. can be stacked on ENDT-
ABLE because the weight of BOX, is less than 50. Suppose also that, by using an
other reasoning path, it finds also the other explanation: because ENDTABLEI is
"very stiff' (one should have d,:6ined this predicate in the data of the theory).
The system will have first to prove that there is no mutual implication between

r

P 195

"BOX is less than 50" and "EYVDTA.BLE 1 is very stiff"
Then it will have to improve ;:s explanation by providing a disjunction of these
two cases.

This very simple example already shows that the proofs of relations among
different explanations must be carefully studied.

As an other example, suppose that one obtairs the two explanations
ExI : the weight of BOX, is less than 50
Ex2: the weight of END TABLE 1 is more than twice the weight of BOX,

depending on the reasoning path that is useu during the proof

In this case, one would have to check that the weight of BOX, is less than 25, I.e.
that the two explantion.s are not contradicting each other
None of them imply the other, they would have both to be kept.

I

4.2.2 The system generates different explanations for different examples

One has also to check the logical dependency of the explanations.

Suppose that comparing daferen: examples, the system is able to recogmuze
that for each example E, the ratio : weight of ENDTABPLE; / weight of BOX, is
almost constant.
This remark would favor explanations like Ex2, where a ratio is involved.

This is a typical case where E3L and SBL should concur . one has to use SBL-Like
methods on data obtained by EBL-like methods.

- CONCLUSION

A frst conclusion is relative to the importance of formal proofs of the validity of
the obtained recognition function. They allow to add or delete the exact amount
of information which is needed to be added or deleted.

A second conclusion is relative to the way the explanation abilities can be
improved by theorem proving. There are to ways to achieve this goal.
The first one is "frst order", i.e., one improves the quality of each proof, due to
a progressive refinement of the data basis.
The second one is "second order",i.e., one improves the quality of the combina-

tions of the different explanations issued from different proofs.

REFERKNCES

[Bucharian & Al. 19711 Buchanan B.G., Feigenbaum E.A., Lederberg J. "A heuris-
tic programming study of theory formation in sciences", Proceedings of the
Second International Joint Conference on Artificial Intelligence, Londres 1971,
pages 40-48.

P g~6

[Buchanan & Mitchell 1978] Buchanan B.G., Mitchell T.M. "Model-directed
learning~ of production rules". in Pcatern-direc red iniferenrce systems, Waterman
DA and Hayes-Roth F. eds., Academic Press, New York 1978.

[Brazdil 1978] P. Brazdil, "Experimental Learning Model', Proc. 3rd AISB meet-
ing, Hamburg 1973, pp. 46-50.

[Bundy & Al. 84] Bundy A.. Silver B., Plummner D. "An Analytical Comparison of
Some Rule Learning Programs". Univ. Edinburgh, DAI Res. paper 125, 1984.

[Cohen & Sammut 1984] Cohen B., Sammut C.: "Program synthesis through con-
cept learning". in Automatic Prog ram Construction Techniques, Biermann A.W..
Uuiho G., Kodlratoff Y. eds, Macmillan Publishing Cornpany,1984, pp. 517-552.
,Macmillan Publishing Company, 1984. pp. 463-482.

[Costa 1982] E. J. F. Costa 71D4r~cursivation automatiq ue en utilisant des
systixnes de r6 crture de termes", These, Paris 1982 Publication Interne LRI
118.

[Dejong 1981] Dejong G., "Generalizations Based on Explanations", Proc. 7th
1JCA1. k981, pp. 67-69.

[Dietterich 81] Dietterich G.L, Michalski R.S.. "Inductive learning of structural
descriptions : Evaluation criteria and comparative rev iew of selected methods"
ArtifIcial intelligence Journal 16. 1981. 257-294.

[Ganascia 85] Ganaascia J.G. "Comment oublier l'aide de contre-exen'ples?"
Actes du congr~s AF.CET RFIA. Grenoble, Novembre 1985.

IH.ayes-Roth 781 Hayes-Roth F.. McDermott J.: "An interference matching tech-
nique for inducing abstractions", C. A CM 21. 1978. 401-411.

IKodratoff 1983] Kodracoff Y., "Ge-icralizing and Particularizing as the Tech-
niques of Learning", Computers and Artificial Intclligence 2, 1983, 417-441.

{Kodratotf & Al. 1984] Kodratoff Y, Ganascia J.-G., Clavieras B., Bollinger T.,
Tecuci 0., "Careful generalization for concept learning" Proc. ECAI-84, Pisa 1984.

M 483-492. Now also available in Advances in Artfcia1 Intelligence, T. O'Shea
tor, pp. 229 - 238. North - Holland.4Amsterdam 1985,

IKodraxoff & Duval 1986] Kodratoff Y., Duval B.,""???", Proc ECAI, - 86

jKodraxoff & Ganascia 1986] KodratolT Y., Ganascia J. -G., "Improving the GenI-
eralization Step in Learning", in Mlachine Learnin-, An Aftificial Intelli ee
*4preach Volume 2 Michalski, R.S., Carbonell, J. G., Mitchell, T.M. (eds)
Moran-Kaufmaan 1986. pp. 215-244.

IKowalski 1979] Kowalski R. Logic for Problem Solving, North Holland 11979.

ILanrgley 1983] P.Langley, "Learning Search Strategies through discrimination".
It. J. Man-Machine Studies 18, 1983, 513-541.

Itebowttz 1986] Lebowitz M.. "Integrated Learning :Controlling Explanation",
Cb0 nitive Science 10. 1986, to appear.

P 197

[Michalski & Chilauski 1980] Michalski R. M, Chilausk,. R, L "Learning by Being
Told and Learning from Exanples - An Experimeatal Comparison of the Two
Methods of Knowledge Acquisition in the Context of Developing an Expert System
for Soybean Disease Diagnosis", Internatl J. of Policy Analysis and Information
Systems 4, 1980.

(Michalski & Al. 1982] Michalski R. M., Davis J H_ Bisht V. S., Sinclair J. B.
"PLANT/ds An Expert Consulting System for the Diagnostic of Soybean
Diseases", Proc. ECAI-82, Orsay 1982, pp. 133-138.

[Michalski & Stepp 1983] Michalski R. S., Stepp R. E. "Learning from Observation
Conceptual Clustering", in Machine Learning, an Artificial Intelligence

Approach, Michalski R.S., Carbonell J.G., Mitchell T.M. eds, Tioga Publishing Com-
pany 1983, pp 163-190

[Michalski 1984] Michalski R.S., "Inductive Learning as Rule-guided Transforma-
tion of Symbolic Descriptions : a Theory and Implementation", in Automatic Pro-
gram Construction Techniques, Biermann A.W., Guiho G., Kodratoff Y eds, Mac-
millan Publishing Company, 1984, pp 517-552

(Mitchell 83] Mitchell T.M.: "Learning and Problem Solving" Proc. IJCAI-83,
Karisruhe 1983, pp. 1139-1151.

[Mitchell, Utgoff & Baner)i 1983] Mitchell T.M . Utgoff P.E., Baner)i R. "Learning
by experimentatior, acquiring and refinng prnblem-solving heuristics",in
Machine Learning, an Artificial Intelli,5 ence .AFroach, N'chalski R.S.. Carbonell
J.G., Mitchell TM. eds, Tioga Publishing Company 1983. pp 163-190.

[Mitchell 1985] Mitchell T M., Mahadevan S. S:eirtberg L. I. "Leap : A Learning
Apprentice for VLSI Design", Proc IJCAI-85, Los Angeles 1985, pp 573-580.

(Nilsson 1980] Nilsson N. J. Principles of Artificial Intelligence, Tioga Pub.
Comp 1980

[Porto 1983] Porto A., "Logical Action Systems", Proc Logic Programming
Workshop'83, Portugal July 1983, pp. 192 - 2C3

[Quinlan 1983] Quinlan J R., "Learning Efficient Classification Procedures and
their Application to Chess End Games" in Machine Learning, An Artificial InteUi-
gence Approach, Michalski. R.S., Carbonell, J G., Mitchell, T.M (Eds.), Tioga Pub-
lishing Company, 1983, pp. 463-482.

[Rosenblatt 1958] Rosenblatt F. "The perceptron i A probabilistic model for
information storage and organization in the brain', Psychological Review 65,
1958, 386-407.

[Samuel 1959, 1963] Samuel A.L. "Some studies in Machine Learning using the
game of checkers", IBM Journal of Research and Development 3, 1959. 211-229.
Samuel A.L. " Some studies in Machine Learning using the game of checkers", in
Computer and Thought, Feigenbaum E.A. et Feldman J. editeurs, McGraw-Hill
New-York 1963, pp 71-105.

[Silver 1983] Silver B, "Precondition Analy:;is Learning Control Information", in
Machine Learning, An Artificial !ntelligence 4 roach, Volume 2, Michalski R.

S., Carbonell J. G .Mitchell T. M eds.\Morg-an Kaulrnarn, Los Atos 1936. PP 647 -

670.

[Touretzky & Hinton 1985] Tourietzky D S. Hinroa G E. "Coanect~onist Infer-
ence Architecture, Proc IJCA1I-85, Los AnieIes, 198.5, pp 238-243

[Vere 80] Vere S.A.: "Multilevel counterfactuals for geaeralizations of relacional
concepts and productions' Artificial Intelligence J. 14.1980 139- 164.

[Vere 81] Vere, S.A., "Constrained N-to-I Generalizatiors", unpublished draft,
23. Feb. 1981.

[Vrain 85] Vrain C. "Contre-exemples .explications d16dutes de 'itude des
pr~dicats", Actes corigr~s.AFCET RE-lA, Grenoble 1985. pp 145 - 159.

[Waldinger 1977] Waldinger R. "Achieving Several Goals SLnu cane ously", in
Mazchine Intelligence 8, E. W. Elcock and D. IMlchie Eds. Ellis HorT;ood 1977.

[Winston 1975] Winston P. H., "Learning Structural Des:ript~ions from Exam-
ples", in The Psychology of Compitrer W1iicn . so P.1-. (eds). Ch. 5. McGraw
Hdli 1975.

AiDDUNnDUM1'

TO(P1:11(~RCEEDT : 1N 1-S C>OF TH E:

INTErHZNAT'IO)NAL. MHHETTNG9

O)N AD'JAP§NCHS IN DIEAiRNI NO

I II 19836

Les Arcs, July 28th - August 1st 1986

Not the Path to Perdition:
The Utility of Similarity-Based Learning

Michael Lebowitz1

Department of Computer Science - Columbia University

New York, NY 10027

27 June 1986

Abstract

A large portion of the research in machine learning has Involved a paradigm of comparing
many examples and analyzing them in terms of similarities and differences, assuming
that the resulting generalizations will have applicability to new examples. While such
research has been very successful, it is by no means obvious why similarity-based
generalizations should be useful, since they may simply reflect coincidences.
Proponents of explanation-based learning, a new, knowledge-intensive method of
examining single examples to derive generalizations based on underlying causal models,
could contend that their methods are more fundamentally grounded, and that there is no
need to look for similarities across examples. In this paper, we present the issues, and
then show why similarity-based methods are important. We present four reasons why
robust machine learning must Involve the integration of similarity-based and explanation-
based methods. We argue that: 1) it may not always be practical or even possible to
determine a causal explanation; 2) similarity usually implies causality; 3) similarity-based
generalizations can be refined over time; 4) similarity-based and explanation-based
methods complement each other in important ways.

Topics: Knowledge acquisition and learning; concept learning; explanation-based learning

1 Introduction
Until recently, machine learning has focused upon a single paradigm - the generalization of

concepts through the comparison of examples. The assumption has been made, though often tacitly, that

the generalization of similarities will lead to concepts that can be applied in other contexts. Despite its

ubiquity there Is one real problem with this paradigm: there Is no obvious reason why the underlying

assumption should hold. In other fields people have called into doubt the utility of noticing similarities in

the world and assuming them to be important. Naturalist Stephen Jay Gould, in discussing the nature of

scientific discovery comments that:

The human mind delights In finding pattern -- so much so that we often mistake coincidence or

'This research was supported In part by the Defense Advanced Research Projects Agency under contract N00039-84-C-0165
and In part by the United States Army Research Institute under contract MDA903-85-0103. Comments by Kathy McKeown on an
earlier draft of this paper were quite useful.

NB - This paper has been already issued in the AAAI - 86 Proceedings. Therefore,

it will be subject to deep modifications before being publicly re-issued.

AI -I II __J

2

forced analogy for profound meaning. No other habit of thought lies so deeply within the soul of a
small creature trying to make sense of a complex world not constructed for it.

'Into this Universe, and why not knowing I/ Nor whence, like water willy-nilly flowing' as the Rubaiyat
says. No other habit of thought stands so doggedly in the way of any forthright attempt to
understand some of the world's most essential aspects -- the tortuous paths of history, the
unpredictability of complex systems, and the lack of causal connection among events superficially
similar.

Numerical coincidence is a common path to intellectual perdition in our quest for meaning. [Gould 84]

Further doubt has been cast upon the use of similarity-based learning by a new methodology that

has been developed in the last few years: the extensive application of knowledge to single examples to

determine the underlying mechanism behind an example, and the use of this causal explanation to derive

generalized concepts. By learning from single examples, this knowledge-based approach calls into

question the necessity of similarity-based approaches.

Despite Gould's warning and the recent successes of explanation-based methods, learning

methods that concentrate on seeking out coincidences have had remarkable success across a variety of

tasks. Furthermore, as Gould implies above, people (and other creatures) do seem to be optimized for

such learning. Given this evidence, it worth trying to explain why such methods work. In this paper we will

explain why similarity-based learning not only works, but is a crucial part of learning,

2 EBL and SBL-
Considerable research has been done involving similarity-based learning (SBL). [Winston 72;

Winston 80; Michalski 80; Michalski 83; Dietterich and Michalski 86; Lebowitz 83; Lebowitz 86a] are just a

few examples. (See also, [Michaiski et al. 83; Michalski et al. 86].) While there are many variations to

such learning research, the basic idea Is that a program takes a number of examples, compares them in

terms of similarities and differences, and creates a generalized description by abstracting out similarities.

A program given descriptions of Columbia University and Yale University and told that they were Ivy

League universities and that the University of Massachusetts was not would define "Ivy League

university" in terms of the properties that the first two examples had and that the third did not - e.g., as

being private, expensive and old. Similarity-based learning has been studied for cases where the input is

specially prepared by a teacher; for unprepared input; where there are only positive examples; where

there are both positive and negative examples; for a few examples; for many examples; for determining

only a single concept at a time; and for determining multiple concepts. In a practical sense, SBL

programs have learned by comparing examples more or less syntactically, using little "high level"

3

knowledge of their domains (other than in deciding how to represent each example initially).

Explanation-based learning (EBL), In contrast, views learning as a knowledge-intensive activity,

much like other tasks in Artificial Intelligence. [DeJong 86; ElIman 85; Mitchell 83a; Mostow 83; Minton 84;

Silver 86] are a few examples of explanation-based learning research. (See also [Michalski et al. 86].) An

EBL program takes a single example, builds up an explanation of how the various components relate to

each other at a low level of detail by using traditional Al understanding or planning methods, and then

generalizes the properties of various components of the example so long as the explanation remains

valid. What is left is then viewed as a generalized description of the example that can be applied in

understanding further examples. This kind of learning is tremendously useful, as it allows generalized

concepts to be determined on the basis of a single example. On the other hand, the building and analysis

of explanations does require extremely detailed knowledge of the domain (which may minimize the need

to learn). In addition, virtually all current EBL work is in the "perfect learner" paradigm that assumes that

all input is noise-free and fits the correct final generalization.

It is Important to make clear here exactly the sense In which EBL is concept learning. It might be

contended that all that is being done is the application of pre-existing Information to a problem, unlike

SBL, which is clearly a form of inductive learning. The key is in the generalization phase, where the EBL

learner loosens constraints on its representation and determines whether the explanation that it has buiht

up still holds. This generalized concept can then serve as a form of compiled knowledge that simplifies

the processing of later input. This may be a way to learn structures such as frames [Minsky 75] and

scripts [Schank and Abelson 77]. The view of using EBL to produce knowledge structures that make later

processing more efficient has been called operationalization [Mostow 83]. Even though It might In some

sense be possible to understand later examples just using low-level rules, realistically It Is crucial to have

a set of knowledge structures at various levels of complexity.

3 The goal of learning

It does not make sense to consider learning in isolation from other elements of intelligent

processing. While certain aspects of learning may not be in service of an Immediate goal (e.g., curiosity),

at some point there must be a task involved to make use of what is learned. In general, the idea is for an

organism or program to be able to carry out a task better (either be able to do more examples or do

examples more efficiently) than it did before learning. I is particularly important to keep In mind the task

nalure of learning when consiering concept learning, which has often been studied without regard to the

A

4

future utility of the concepts created.

For most tasks that people or intelligent programs will carry out, the most obvious way to be able to

improve performance is to attempt to develop a causal model that explains how elements of the domain

work. Such a model will allow the learner to predict what Is likely to happen in later situations, which will

clearly be useful. The model will allow the learner to understand further input. Although we will consider

later whether it is possible in all domains, the construction of a causal model Is clearly a worthy goal in

learning. [Schank 75; Schank 84] present reasons for constructing such models even in domains with

incomplete models. Explanation-based learning methods strike directly at the problem of creating causal

models. Similarity-based methods do not, but yet seem to lead to useful generalizations. This leads us to

the central mystery of this paper.

4 The puzzle
Having decided that the construction of a causal model for a domain is important, or perhaps even

crucial, as part of learning, we are left with the key question, "Is there any role for similarity-based

learning in a full learning model, and if so, why?" Even if we assume that there must be something to

SBL, since, after all, so many people have worked on it with impressive results, we must ask why it works;

why it helps a learner perform better. That generalizations from explanation-based leaming are valid and

useful makes sense intuitively, since they are derived from causal analyses. Similarity-based

generalizations could just be the result of the coincidences that arise in a complex world.

Note that similarity-based learning is not merely an artifact of researchers in machine learning. As

pointed out in the Gould quote above, people delight in noticing similarities in disparate situations. Indeed,

in many ways human processing seems to be optimized for such learning. An anecdotal example

immediately comes to mind: On the Eastern Air Shuttle between New York and Boston, passengers are

given a sequence number for boarding. On one roundtrip, I received the same sequence number going

in each direction. I noticed the similarity immediately, even though the first number was not in front of me

when I received the second, despite the apparent irrelevance of the coincidence to my performance on

later shuttle trips. Virtually everyone has experienced, and noticed, similar coincidences. When nature

provides such a powerful cognitive mechanism, there always seems to be a good reason. We will see

shortly why the reognition of similarities is important, though, to reiterate, the utility is not obvious and

should not simply be assumed by SBL researchers.

5

5 A similarity-based learning program

We can most easily look at the utility of SBL in the context of a specific learning program.

UNIMEM [Lebowitz 82; Lebowitz 86a; Lebowitz 86b] takes examples represented as sets of features

(essentially propertytvalue pairs) and automatically builds up a generalization hierarchy using similarity-

based methods. It is not told in advance which examples to compare or concepts to form, but Instead

learns by observation. One domain on which we have tested UNIMEM involves data about universities

that was collected from students in an Artificial Intelligence class at Columbia. 2

Figure 1 shows the information used by UNIMEM for two universities, Columbia and Carnegie-

Mellon. Each university is represented by a set of triples that describe features of the university, the first

two providing a property name and the third its value. So, Columbia Is In New York State while Carnegie-

Mellon is in Pennsylvania. Both are urban and private and Columbia has a 7/3 male/female ratio

compared to Carnegie-Mellon's 6/4. Some features, like quality of life, Involve arbitrary numeric scales.

EATURE: COLUMMIA: CHU:

STATE VALUE NEW-YORK PENNSYLVANIA
LOCATION VALUE URBAN URBAN
CONTROL VALUE PRIVATE PRIVATE
MALE:FEMALE VALUE RITIO:7:3 RATIO:6:4
NO-OF-STUDENTS VALUE THOUS:5- THOUS:5-
STUDENT:FACULTY VALUE RATIO: 9:1 RATIO: 10:1
SAT VERBAL 625 600

MATH 650 650
EXPENSES VALUE THOUS$:10+ THOUS$:10+
%-FINANCIAL-AID VALUE 60 70
NO-APPLICANTS VALUE THOUS:4-7 THOUS:4-7
%-ADMITTANCE VALUE 30 40
%-ENROLLED VALUE 50 50
ACADEMICS SCALE :1-5 5 4
SOCIAL SCALE:1-5 3 3
QUALITY-Or-LIFE SCALE:1-5 3 3
ACAD-EMPHASIS VALUE LIB-ARTS ENGINEERING

Figure 1: Information about two universities

The first question we have to address concerning the examples In Figure 1 Is precisely what It

means to "understand" them, or to learn from them. While the exact nature of understanding would

depend on the ultimate task that we had in mind, presumably what a person or system learning from

2Otter domains UNIMEM has been tested on include: Information about states of the United States, Congressional voting
records, software evaluations, biological data, footbafl plays, universities, and terrorism stories.

-- - -, nnn m n m mm mm m A

6

these examples would be after is a causal model that relates the various features to each other.

As an example, in understanding Figure 1 we might wish to know how the fact that both

universities are private relates to the fact that they are both expensive or why Carnegie-Mellon offers

financial aid to more people. A causal model that answers questions of this sort would be extremely

useful for almost any task involving universities. Typical of the causation that we would look for is, for

example, that private universities get less government support and hence have to raise more money

through tuition. (At least that is how private universities explain it!) Similarly, a model might indicate that

Carnegie-Mellon's emphasis on engineering leads to the acceptance of more students who need financial

aid. Notice, however, that it will certainly not be possible to build a complete causal model solely from the

Information in Figure 1, but will require additional domain knowledge.

An EBL program would create a low-level causal model of a university using whatever methods

were available and then would use the model to develop a generalized concept. For example, it might

decide that the Columbia explanation could be generalized by removing the requirement of being in New

York State and by allowing the numeric values to vary within ranges, If none of these changes would

affect the underlying explanation. It might be, however, that the liberal arts emphasis is crucial for some

aspect of the explanation. In any case, by relaxing constraints In the representation, an EBL program

would develop, using a single, causally motivated example, a generalized concept that ought to apply to a

wide range of situations.

Let us now compare the desired causal explanation with the kind of generalization made using

similarity-based methods. Figure 2 shows the generalization that is made by UNIMEM, GND1, from the

two university representations In Figure 1.3 We see in Figure 2 that UNIMEM has generalized Columbia

and Carnegie-Mellon by retaining the features that have identical values (like social level and quality of

life), averaging feature values that are close (such as SAT verbal score) and eliminating features that are

substantially different, such as the state where the university Is located and the percentage of financial

aid.4 The resulting set of features can be viewed as a generalization of the two examples, as it describes

both of them, as well as, presumably, other universities that differ in other features.

2Actually, UNIMEM also had to edde that these two examples should even be compared and that they had a substantial amount

In common before doing the actual generalization.

4Exacty what constitutes "substantially differenr is a parameter of the program.

IA

7

GND1
SOCIAL SCALZ: 1-5 3
QUALITY-OF-LIFE SCALE 1-5 3
LOCATION VALUE URBAN
CONTROL VALUE PRIVATE
NO-OF-STUDENTS VALUE THOUS:5-
STUDENT: FACULTY VALUE RAT 10:9:1
SAT MATH 650
SAT VERBAL 612.5
EXPENSES VALUE THOUS$:10+
NO-APPLICANTS VALUE THOUS:4-7
%-WNROLLED VALUE 50
[CARNEGIE-MELLON COLUMBIA]

Figure 2: Generalizing Columbia and Carnegie-Mellon

What would the generalization in Figure 2 be used for once it had been made? Presumably it

would be used in processing Information about other universities. If we identified a situation where GND1

was thought to be relevant, we would assume that any of its features that were not known would indeed

be present. The assumption Is made by all similarity-based learning programs. Including UNIMEM. that

they have created usable concepts from which default values may be Inherited.

We can now state our problem quite clearly in terms of this example: Mat reason do we have to

believe that a new example that fits pat of the generaization of Columbia and Carnegie-Mellon will fit the

rest? With explanation-based methods we at least have the underlying causal model as justification for

believing the generalization. But what is the support of similarity-based learning?

6 Elements of an answer

There are four main elements to our explanation as to why SBL produces generalized concepts

that can be profitably applied to other problems and why t should be so used:

" While the goal of learning Is Indeed a causal model, It Is often not possible to determine

underlying causality and even where It Is possible it may not be practical.

" Similarity usually Implies causality and is much easier to determine.

* There are ways to refine generalizations to mitigate the effects of coincidence.

" Explanation-based and similarity-based methods complement each other in crucial ways.

,--A

8

6.1 Causality cannot always be determined

In order to achieve their Impressive results, the EBL methods that have been developed to date

assume that a complete model of a domain is available and thus a full causal explanation can be

constructed. In addition, it Is assumed that it is always computationally feasible to determine the

explanation of any given example. While these assumptions may be acceptable for some learning tasks,

they do not appear reasonable for situations where we are dealing with noisy, complex, uncertain data -

characteristics of most real-world problems. It is also unreasonable to expect to have a complete domain

model available for a new domain that we are just beginning to explore. Even In our university example, it

is hard imagine all the information being available to build a complete model.

Most EBL work has not addressed these Issues. Some of the domains used, like Integration

problems [Mitchell 83a], logic circuits [Mitchell 83b; Ellman 85] or chess games [Minion 84] do Indeed

have complete domain models and the examples used are small enough for the explanation construction

to be tractable. Even in a domain such as the news stories of [DeJong 86], the assumption is made,

perhaps less validly, that it is always possible to build up a complete explanation.

In domains where a detailed explanation cannot reasonably be constructed, a learner can only rely

on similarity-based methods. By looking for similarities it is at least possible for the learner to bring some

regularity to its knowledge base. The noticing of co-occurrence is possible even the absence of a

complete domain model. Further, much research, including our own, has shown that SBL can be done

efficiently In a variety of different problem situations. In the university example of Section 5, UNIMEM was

able to come up with a variety of similarity-based generalizations with minimal domain information.

Further, as we noted above, people seem to be optimized for SBL.

6.2 Similarity usually Implies causality

The regularity that is detected using SBL is not worthwhile N it cannot be used to help cope with

further examples. Such help Is not likely If there is no connection between the similarities and the

underlying causal explanation. Fortunately, such a connection will usually exist.

Put as simply as Is possible, similarities among examples usually occur because of some

underlying causal mechanism. Clearly if there is a consistent mechanism, it will produce consistent

results that can be observed as similarities. While the infinite variety of the world will also produce many

coincidental similarities, it is nonetheless true that among the observed similarities are the mechanisms

-- - mmmmmm m•mmJumnA

9

that we desire.

So, in the Eastern Shuttle example used above, while it is almost certain that the duplicate seat

numbers I received were coincidental, If there was a mechanism involving seat numbers (say the
numbers were distributed in alphabetical order) it would manifest Itself in this sort of coincidence.

Similarly, In the university generalization GND1 (Figure 2), we indicated possible of mechanisms that

would lead to the kind of expensive private school that is described.

Two recent examples illustrate how causal understanding frequently relates to similarity-based

processing. The first involves scientific research, an attempt to understand a complex meteorological

phenomenon, and the second an investigation Into a mysterious crime.

In recent years weather researchers have been trying to explain a set of possibly related facts.

Specifically: 1) the average temperature in 1981 was very high; 2) the El Chichon volcano erupted

spectacularly in early 1982; 3) El Nino (a warm Pacific current) lasted an exceptionally long time starting

in mid-1982; 4) there have been severe droughts in Africa since 1982.

One might expect researchers to Immediately attempt to construct a causal model that explains all

these phenomena. However, weather systems are extremely complex, and by no means fully

understood. Author Gordon Williams, writing in Atlantic, discusses the attempt to gain understanding as

follows: "How could so much human misery In Africa be caused by an errant current In the Pacific?

Records going back more than a century show that the worst African droughts often come in El Nino

years." (Emphasis added.) Furthermore, Williams quotes climate analyst Eugene Rasmusson as saying,
UIt*s disturbing because we don't understand the process" [Williams 86].

We can see clearly n this example that although the ultimate learning goal is a causal model, the

construction of such a model Is not immediately possible. So, researchers began by looking for

correlations. However, they expect correlations to lead eventually to deeper understanding.

The second example involves investigators trying to determine how certain extra-strength Tylenol

capsules became laced with poison. The New York Times of February 16, 1936 reported:

Investigators tracing the routes of two bottles of Extra-Strength Tylenol containing cyanide-laced
capsules have found that both were handled at the same distribution center In Pennsylvania two
weeks apart last summer. Federal officials and the product's manufacturer said that the chance that
the tainting occurred at the distribution facility was remote, but the finding prompted investigators to
examine the possibility as part of their inquiry." (McFadden 861

or

10

Again we have a case where a causal explanation Is desired and yet there is not enough

information available to construct one. So, the investigators began by looking for commonalities among

the various poisoned capsules. When they found the distribution facility in common, that became an

immediate possible contributor to the explanation. Although no final explanation had been discovered as

this is written, it is clear that the explanation process attempted began with the noticing of similarities.

There is one further connection between noticing similarities and generating explanations that is

worth making. This involves the idea of predictability. It turns out that the kinds of similarities that are

noticed provide clues not only to what features should be involved in an explanation, but what the

direction of causality might be (e.g., what causes what). As we have described elsewhere [Lebowitz 83;

Lebowitz 86c], features that appear In just a few generalizations, which we call predictive, are the only

ones that indicate a generalization's relevance to a given situation, and, further, are those likely to be the

causes in an underlying explanation. This becomes clear when we realize that a feature present in many

different situations cannot cause the other features in any single generalization, or it would cause the

same features to appear in al/the other generalizations that it is in.

In the weather example above, I we knew of many generalizations Involving droughts, but only

one with both warm currents and a volcano, then the volcano might cause the drought, but the drought

could not cause the volcano. Of course, it may be that neither direction of causality Is right, there being a

common cause of both, but at least predictability provides a starting point.

The power of predictability is that it can be determined quite simply, basically as a byproduct of the

normal SBL process. The various indexing schemes used in a generalization-based memory [Lebowitz

83; L.bowitz 86a] allow the simple counting of features In context. While there are many problems to be

explored, particularly that of predictive combinations of features, the ability to know the likely initial causes

when determining a mechanism is an important advantage of SBL. Further, even when no explanation

can be found, the use of predictability often allows us to make predictions from a generalization at the

correct moments, even without any deep understanding of the generalization

6.3 Refining generalizations

The third part of our explanation as to the utility of similarity-based learning is that generalizations,

once made, are not immutable - they can be refined in the light of later information. This means that the

aspects of a generalizations that are due to coincidence can be removed. We have developed various

11

techniques for doing this [Lebowitz 82] that work essentially by noticing during processing when various

elements of a generalization are contradicted by new examples. If we remove the features that are

frequently contradicted we can have a concept that is more widely applicable and contain meaningful

information.

As an example of this, we will look again at our university generalization (Figure 2). Suppose that

there were a wide range of universities with most of the features of GNDi, but with different levels of

social life. This contradiction of the social level value that was derived from the coincidental value that

both Columbia and Carnegie-Mellon have might seem to invalidate the generalization. However, our

refinement methods would allow UNIMEM (or a similar system) to remove this feature, leaving a more

widely applicable generalization that describes high-quality private schools. In this way similarity-based

methods can overcome some of the coincidences that might seem to require explanation-based methods.

Notice, however, that UNIMEM makes this refinement without having any real idea of why it is doing so,

other than the pragmatic rationale that it allows the generalization to fit more examples, but does not

reduce it so much that it carries no Information.

6.4 Integrated learning

The final element of our explanation for the importance of similarity-based methods lies in the need

for an integrated approach employing both similarity-based and explanation-based approaches. This point

Is really a corollary of the relation between similarity and causality described in Section 6.2.

The basic Idea Is to use EBL primarily upon the generalizations that are found using SBL rather

than trying to explain everything in sight. This drastically cuts down the search necessary for constructing

an explanation, particularly in domains where we have very little specific knowledge and have to rely on

general rules for the explanations. Basically, we use SBL as a bottom-up control on the top-down

processing of EBL.

The "real world" weather and crime Investigation examples in Section 6.2 illustrate clearly how

human problem solvers make use of this form of integrated learning -- trying to explain the coincidences

that are noted, rather than explaining every element of a situation from scratch. We have described how a

simple form of such integrated learning has been implemented for UNIMEM in [Lebowitz 86c]. For the

university example in Figure 5, the main point is that we would only try to build up an explanation for the

generalization GND1 (actually, the version of GND1 refined over time), and not the specific examples that

12

made it up. Explaining the generalization is likely to be much easier than explaining the features of

Columbia and Carnegie-Mellon and provide almost as much Information.

7 Conclusion
We have shown in this paper a number of ways that similarity-based learning can contribute to the

ultimate learning goal of building a coherent causal explanation of a situation. From this analysis it is not

surprising that people seem to be optimized for noticing similarities, as such processing leads to the

understanding that helps deal with the world. Our computer programs should be equally well equipped.

Similarity-based learning is definitely not the path to perdition.

References

[DeJong 86] DeJong, G. F. An approach to learning from observation. In R. S. Michalski,
J. G. Carbonell and T. M. Mitchell, Ed., Machine Learning: An Artificial Intelligence Approach, Volume II.
Morgan Kaufmann, Los Altos, CA. 1986, pp. 571 - 590.

[Dietterich and Michaiskl 86] Dietterich, T. G. and Michalski, R. S. Learning to predict sequences. In
R. S. Michalski, J. G. Carbonell and T. M. Mitchell, Ed., Machine Learning: An Artificial Intelligence
Approach, Volume II, Morgan Kaufmann, Los Altos, CA, 1986, pp. 63 - 106.

[ElIman 85] Eiliman, T. Generalizing logic circuit designs by analyzing proofs of correctness.
Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Los Angeles, 1985, pp.
643 - 646.

[Gould 84] Gould, S. J. "The rule of five." NaturalHistory 93, 10, October 1984, pp. 14 - 23.

[Lebowltz 82] Lebowitz, M. "Correcting erroneous generalizations." Cognition and Brain Theory 5, 4,
1982, pp. 367 - 381.

[Lebowitz 83] Lebowitz, M. "Generalization from natural language text." Cognitive Science 7, 1, 1983,
pp. 1 - 40.

(Lebowitz 86a] Lebowitz, M. Concept learning in a rich input domain: Generalization-Based Memory.
In R. S. Michalski, J. G. Carbonell and T. M. Mitchell, Ed., Machine Learning: An Artificial Intelligence
Approach, Volume II, Morgan Kaufmann, Los Altos, CA, 1986, pp. 193 - 214.

[Lebowitz 86b] Lebowitz, M. UNIMEM, a general learning system: An overview. Proceedings of
ECAI-86, Brighton, England, 1986.

(Lebowitz 86c] Lebowitz, M. "Integrated learning: Controlling explanation." Cognitive Science 10, 2,
1986, pp. 219 - 240.

[McFadden 86] McFadden, R. '"wo bottles of poisoned tylenol were shipped by the same distributor."
New York Times 135, February 16, 1986, pp. 1.

[Michalski 80] Michalski, R. S. "Pattern recognition as rule-guided inductive inference." IEEE
Transactions on Pattern Analysis and Machine Intelligence 2, 4, 1980, pp. 349 - 361.

13

[Michalski 83] Michalski, R. S. "A theory and methodology of inductive learning." Artificial Intelligence
20, 1983, pp. 111 -161.

[Michalski et al. 83] Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.). Machine Learning, An
Artificial Intelligence Approach. Morgan Kaufmann, Los Altos, CA, 1983.

[Michalski et al. 86] Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.). Machine Learning, An
Artificial Intelligence Approach, Volume i. Morgan Kaufmann, Los Altos, CA, 1986.

[Minsky 75] Minsky, M. A framework for representing knowledge. In P. H. Winston, Ed., The
Psychology of Computer Vision, McGraw-Hill, New York, 1975.

[Minton 84] Minton, S. Constraint-based generalization. Proceedings of the Fourth National Conference
on Artificial Intelligence, Austin. TX, 1984, pp. 251 - 254.

[Mitchell 83a] Mitchell, T. M. Learning and problem solving. Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, 1983, pp. 1139 - 1151.

[Mitchell 83b] Mitchell, T. M. An intelligent aid for circuit redesign. Proceedings of the Third National
Conference on Artificial Intelligence, Washington, DC, 1983, pp. 274 - 278.

[Mostow 83] Mostow, J. Operationalizing advice: A problem-solving model. Proceedings of the 1983
International Machine Learning Workshop, Champaign-Urbana, Illinois, 1983, pp. 110 - 116.

[Schank 75] Schank, R. C. The structure of episodes in memory. In D. Bobrow and A. Collins, Ed.,
Representation and Understanding: Studies in Cognitive Science, Academic Press, New York, 1975, pp.
237-272.

[Schank 84] Schank, R. C. The Explanation Game. Technical Report 307, Yale University Department
of Computer Science, New Haven, CT, 1984.

[Schank and Abelson 77] Schank, R. C. and Abelson, A. P. Scripts, Plans, Goals and Understanding.
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1977.

[Silver 86] Silver B. Precondition analysis: Learning control information. In R. S. Michalski,
J. G. Carbonell and T. M. Mitchell, Ed., Machine Learning: An Artificial Intelligence Approach, Volume II,
Morgan Kaufmann, Los Altos, CA, 1986, pp. 647 - 670.

[Williams 86] Williams, G. "The weather watchers." Atlantic 257,1986, pp. 69 - 73.

EWinston 72] Winston, P. H. Learning structural descriptions from examples. In P. H. Winston, Ed., The
Psychology of Computer Vision, McGraw-Hill, New York, 1972, pp. 157 - 209.

[Winston 80] Winston, P. H. "Learning and reasoning by analogy." Communications of the ACM 23,
1980, pp. 689 - 702.

,, n =,mm~m -Am a I mmm m mmmmm m lm

Kepler's and Black's discoveries provide additional examples of numeric laws. The
third law of planetary motion relates two observable attributes - the mean distance d of
a planet from the sun and the period p of that planet. Kepler's statement of this law was
that "the squares of the periods of revolution of the planets are proportional to the cubes
of the mean distance to the sun." However, one can also state this law by defining the
term X = ds/p 2 and noting that the value of X is constant across all planets.

Black's heat law is more complex, involving two objects with different temperatures
that are placed in contact. Over time, the temperature of one object increases and the
other decreases until they become equal. The final temperature is a function of the initial
temperatures, the masses of the objects, and the particular substances involved. This law
points out the need for our second class of terms - intrinsic properties.

2.2 Defining Intrinsic Properties

An intrinsic property is some term that, for a given object or class of objects, has a
constant value over time. Thus, this value can be associated with the object/class and
retrieved whenever that object/class is encountered. For instance, values of the intrinsic
property mass are associated with specific objects, while values of the property density are
associated with entire classes of objects (a 'substance'). Our second operator for empirical
discovery is responsible for postulating intrinsic properties and inferring their values.

We denote an intrinsic property as i-p(O) = n, where 0 is an object or object class
and n its associated value for the intrinsic property i.p(O). Unlike numeric term such
as PV/T, intrinsic properties cannot be directly defined in terms of observable attributes.
Instead, they require some assumptions about the form of the law involved and the solution
of simultaneous equations. However, once an intrinsic property has been defined and its
values have been computed, it can be used in the same way as an observable attribute.

After the famous bathtub incident, Archimedes formulated the principle of displace-
ment: the volume of an body immersed in fluid equals the volume of the liquid it displaces.
Using this principle, Archimedes was able to measure the volume of an irregular object, and
thus to determine its density and composition. This volumetric attribute can be viewed
as an intrinsic property for which different irregular objects having different values. Once
these values have been determined, they can be used to distinguish different objects from
one another.

Mass is another intrinsic property that occurs in several quantitative laws, including
conservation of momentum. For the collision of two objects, this law can be stated as:

mIVI + m2v 2 = mlv + rn 2

where m, and m2 are the masses of the two objects, vi and v2 are the velocities before
impact, and v' and v2 are the velocities after impact. Given the form of this law and
the ability to measure the velocities, we can determine the relative masses of the colliding
objects. This involves solving simultaneous equations for the unknown masses, and this
in turn requires enough equations to identify their values. If one wants to determine the
masses of five different objects, then exactly five observed collisions are needed. Once

3

the mass of an object has been identified, this value can be used in other experiments to
discover still other laws.

2.3 Forming Composite Objects

The above operators focus on attributes, and such attributes must always be associated
with a single object. However, the conservation of momentum law just described involves
a constant relation between objects. One way to represent such relations involves defining
a new composite object, and stating the law in terms of this composite's attributes. Given
two or more objects O and 02, one can define a composite object O which has 01 and
02 as its components. We express this as:

0, = 01 & 02

Such a composite object can be handled in the same way as an observable object, provided
one can determine the values of its attributes. Many of these can be computed directly
from the attributes of its component objects. For example, the mass of a composite object
is simply the sum of the component masses, while the density involves a weighted average
of the component densities.

In summary, composite objects are useful in stating empirical laws which relate some
set of objects rather than describing a single object. Our third operator for empirical
discovery is responsible for defining such composites. Such an action seems especially
useful when a conservation law is involved. Let us consider the momentum example in
more detail, in order to clarify the role of this operator and its interaction with the other
operators.

The basic experimental situation involves two objects O1 and 02 that collide with
each other. Based on the initial velocity v and the final velocity v' for each object, our
second operator can define the intrinsic properties m (the mass of each object) and infer
its value. Based on this property and the velocities, our first operator can define the
numeric attributes P = mv (initial momentum) and Q = my' (final momentum). No
simple regularities arise from looking at these attributes for isolated objects. However, if
one defines the composite object 0 -, O & 02, and if one assumes that the momentum
of O is the sum of its components' momenta, then the simple law P/Qc = 1 emerges. This
shows some of the representational power one can achieve by defining composite objects.

Now let us consider another example in which there is even more interaction between
intrinsic properties and composite objects. If the surface of one body slides over the
surface of another, the two bodies exert a frictional force on each other. The quantity of
friction depends on the composition of the two objects and on the force pressing the bodies
together, but is independent of the area of contact and the speed. This relationship can
be expressed as

F = Fn

where F is the frictional force, F. is the normal force pressing the two objects together
and A is the friction coefficient.

4

The coefficient p in the friction law can be viewed as an intrinsic property, but unlike
most such properties, its values are a function of both substances. Thus, the friction
. _fficient for steel on steel is different than for aluminum on steel, and the best one can
do is to store values with each pair of substances. Given this situation, it seems natural
to define composite objects* such as steel-steel and aluminum-steel and to associate each
intrinsic value with one such composite. In this way, we can retain the assumption that
intrinsic values are associated with single objects, and leave the responsibility for creating
such objects with our third operator.

2.4 Defining Classes of Objects

Just as one can define composite objects, one can also define new classes of objects.
Thus, one might decide that objects 01, 03, and 07 have similar properties and belong
to the same basic type, leading one to define a new group Og with these three objects
as members.** We will denote this new group as O = {01,03,07}. New terms of
this form are quite useful in stating qualitative laws such as occurred in the early days of
chemistry and biology. Furthermore, such groups can be modified incrementally; if one
later encounters object 010 that is similar to existing members of the class 09, then one
may add 010 to the class. The process of defining classes can also be applied recursively
to form a taxonomy or classification hierarchy. For instance, having defined the object
classes O and 0 1, one might group these together to define a higher level class 0 m,.

Such taxonomies aid the discovery of qualitative laws at different levels of abstraction.
For example, early biologists spent much of their time defining different species, classes of
species, and so forth. Similarly, the early chemists devoted considerable effort to defining
classes such as alkalis, acids, and salts. In each case, these classes were defined not only by
their members, but also by the features held in common by those members. These defining
features can be viewed as qualitative empirical laws. Michalski (1980) has used the phrase
conceptual clustering to refer to this task of formulating taxonomies and determining their
associated descriptions.

Just as class formation can help in discovering empirical laws, so can the discovery of
qualitative laws suggest new classes. For instance, Mendel experimented with self-fertilized
peas and found that some yellow peas produced only yellow offspring, other yellow peas
produced both yellow and green offspring, and green peas consistently had green offspring.
Based on these observations, he defined the classes of hybrids and purebreds and formulated
the laws of genetic segregation as follows:

* Actually, these are object classes rather than individual objects. Just as one can associate

intrinsic values with classes of objects as well as specific objects, so can one form composites with
object classes.
•* Note that the initial objects here are linked to the new object-class by an instance-of or
aubaet-of relation. This contrasts with the part-of relations that holds between composite objects
and their components.

.i5

V X E purebreds parent-of(xy) =:O y E purebreds

V z E hybrids parent-of(z,y) :. y E hybrids V y E purebreds

The first of these laws can be paraphrased 'All purebreds produce offspring which are
purebreds.' The second empirical generalization can be restated 'All hybrids produce some
offspring which are hybrids and some which are purebreds.' The two classes, together with
the laws summarizing their behavior, formed the basis for the genetic theory.

As we have mentioned, classes may change their membership over time, and the details
of this process may prove interesting. Early chemists first defined the classes of acids,
alkalis, and salts in terms of their taste. However, they soon discovered that acids reacted
with alkalis to form salts, and this empirical law gradually became a central feature of all

three classes. Ultimately, substances that did not taste sour were included as acids because

they reacts with known alkalis to form salts. This shift also led to the more abstract class

of bases; this included the subclasses of alkalis and metals, both of which reacted with
acids.

2.5 Defining Composite Relations

Objects can be described by their attributes, but they can also be described through

their relations to other objects, and this suggests a fifth type of defined term. Given a

set of primitive relations between objects, one can define new composite relations. This
is similar to the process of defining composite objects, except that one must handle the

arguments of these relations.* For example, one can combine the relations brother(X, Y)

and spouse(X, Y) to define the composite relation brother-in-law(XZ). This can be stated

formally as:

brother-in-law(X,Z) -= brother(X, Y) & spouse(Y, Z)

this means that X is the brother-in-law of Z if X is the brother of Y and Y is the spouse

of Z. By composing an existing relation (such as parent-of(X, Y)) and a qualitative at-

tribute (such as color), one can also define more specific relation (such as parent-of-green-

child(X, Y).

Similarly, one might define the inverse of an existing relation.

The definition of composite relations can be viewed as one form of chunking. Al-
though the existing machine learning work on chunking (Neves & Anderson, 1981; Laird,

Rosenbloom, & Newell, 1984) has focused on procedural knowledge, chunks can also be
perceptually-oriented. In skill acquisition, chunking methods have been used to improve
the problem solving process. In scientific discovery, the goal is instead to describe the

behavior of objects and classes over time.

* Forming composite relations is also similar to defining numeric attributes, but the latter take

at most one object as their argument, while relations can take an arbitrary number. Also, the
latter take on only numeric values, while relations describe qualitative links between objects.

-- .n ,=m mm mm~l mmnmmn inue I I6

Many mathematical concepts can be viewed as relations defined in terms of simpler
relations. As Lenat (1977) has shown, one can define multiplication in terms of the addition
concept, and one can in turn use multiplication to define the concept divisors-of. This
term can ther. be used in the definition of prime numbers, which are simply those natural
numbers having only two divisors (themselves and one). Other concepts from number
theory can be constructed along the same lines.

In a similar fashion, one can imagine Mendel defining the two restricted versions of the
parent relation:

parent-of-gree n-child(X, Y) .= parent(X, Y) & color(Y, green)

pare nt-of-yellow-child(X, Y) .-= parent (X, Y) & color(Y, yellow)

Given these higher-level relations, one can more easily define the classes of purebred and
hybrid peas. Purebreds consist of those peas satisfying only one of these relations, while
the hybrid class contains those peas satisfying both relations.

2.6 Defining Classes of Relations

If one can define classes of objects, then one can define classes of relations as well,
and our sixth operator is responsible for this process. Relational classes prove useful in
that they can take the place of specific relations in the statement of qualitative laws.
For instance, the electrical, magnetic, gravitational, and nuclear forces all differ in their
details, but they have much in common as well. As a result, it makes sense to consider
them as members of a more abstract force relation. Similarly, both the phlogiston and
oxygen theorists held that combustion and rusting were instances of a related process,
even though their superficial effects were different. Such relational classes let one state
more general laws and make more predictions than a number of specific relations.

Let us consider an example of how this sixth operator might be used. Suppose that
one does not yet have a general notion of reactions, but knows that when HOI and NaOH
are combined, both substances disappear and a new substance NaCl appears (along with
some water). Now suppose one combines HNO 3 and KOH, finding that a new substance
KNO 3 appears (along with some water). After observing these two experiments, one might
define the class of relations alkali-ombines-with-acid-to-form-aalt with these two specific
relations as members. One can use this abstract relation in qualitative laws that describe
object classes. Moreover, these laws can be used as 'data' in suggesting even more abstract
relations, such as the general class of reactions.

The process of defining relational classes is the least well-explored of the operators we
have described, and to our knowledge, none of the existing Al discovery systems have used
this operator. As a result, it will not come into play during our review in the following
section. However, we believe the process of defining relational classes is just as central
to constructing a truly integrated discovery system as the other five operators we have
discussed.

7

2.7 An Ordering on the Operators

In the previous sections, we described six operators for defining new terms which form
a problem space for empirical discovery. Table 1 lists these operators and the formal
notation we have introduced for each. For any reasonable domain, the search space which
these operators define is extremely large. Therefore, a robust discovery system will require
some heuristics to determine the best operator to apply in a given situation.

Table 1: Operators and notation

OPERATOR NOTATION

numeric term X = f(al, a3, as)

intrinsic property i-p(O) = n

composite object O= 01&04

class of objects C2 = {01, 03, 07}

composite relation R (O1, 02) 4= R1 (01,02) &R2 (O, 02)

class of relation R,(O 1,0 2) = {R 1(0 1,0 2), R 2(0 1 ,0 2), R 7(0 1 ,0 2)}

As we will see in the following section, existing Al discovery systems address only
a subset of this problem space and use at most two of the operators. As a result, the
problem of search control is not as serious for these systems.* A more complete response
to this problem must take the form of an implemented discovery system which uses all of
the operators, thus addressing the entire problem space and forcing a principled answer to
search control. Yet a look at the history of science reveals an initial plausible ordering on
the operators. Let us review the evolution of chemistry with this goal in mind.

Early chemists were concerned with the classification of chemical substances and with
qualitative relations between these substances. This seems natural, since one must de-
cide on a basic set of classes and relations before considering quantitative laws. They
formed object classes such as acids and alkalis, originally defined in terms of simple qual-
itative attributes but eventually incorporating relational laws. They formed composite
relations such as acid-reacts-with-alkali, and they also formed abstract classes of such re-
lations. One of the early chemical controversies revolved around whether reactions and

* Actually, Lenat's (1977) AM has an agenda mechanism which lets the system select among

tasks. Even though AM uses only two of our operators (defining composite relations and defining
classes of objects), this agenda mechanism has the flavor of an integrated system.

-A

7

mixtures involved two different processes; this can be viewed as a debate about the appro-
priate classes of relations. Thus, three of our operators - forming object classes, defining
composite relations, and forming relational classes - are employed early in the empirical
discovery process.

At the end of the 18th century, chemists shifted their attention from qualitative laws to
quantitative aspects of chemical reactions. They stopped focusing on symbolic attributes
such as color and taste,* and turned to numeric attributes such as volume and weight.
This paradigm shift led directly to principles such as the conservation of mass, Proust's
law of constant proportions, Dalton's law of simple proportions, and Gay-Lussac's law of
combining volumes. These numeric laws related the masses and volumes of the substances
involved in reactions, and all were discovered during the late 1700's and early 1800's.

Upon closer examination, we find that the remaining three operators have a central role
to play in these quantitative discoveries. For instance, suppose we observe the weight WE
of an element entering a reaction and the weight WC of the compound that results. From
these two terms, one can define the ratio WE!Wc, and this numeric term has a constant
value for any pair of substances. This is one version of Proust's law of constant proportions.
Given such a constant value, it make sense to define an intrinsic property and to associate
it with the objects involved for future use. However, the value is conditional on both the
element and the resulting compound, so that we must first define a composite object and
associate the intrinsic value with it. Similar interactions between these three operators
occur for Dalton's and Gay-Lussac's laws, and the operator for defining composite objects
also proves useful for stating conservation of mass.

To summarize, operators which promote qualitative discoveries (defining classes of
objects, composite relations, and relational classes) generally precede operators which pro-
mote quantitative discoveries (defining numeric terms, intrinsic properties, and composite
objects). However, the ordering on our operators is not as simple as we have suggested.
Ultimately, these quantitative discoveries led to higher level 'data' which chemists used
formulate higher level classes. In particular, estimates of the intrinsic property atomic
weight* led Mendeleev to propose his periodic table, which classified elements using two
complementary taxonomies (corresponding to the rows and columns of the table). Hence,
qualitative discoveries lay the foundation for quantitative discoveries, but the latter can in
turn lead to still higher level qualitative laws.

* It in important to note that qualitative information was not abandoned when chemistry en-
tered its quantitative stage. Qualitative features were still used to identify substances, and such
identification was absolutely necessary to successful quantitative studies. However, such identifi-
cation had become trivial at this point, and the major efforts of chemists were devoted to numeric
aspects.
0* Actually, qualitative features also played an important role in Mendeleev's discovery, but
atomic weight was a central component.i 9

3. Previous Research on Machine Discovery

Now that we have presented a problem space for empirical discovery, let us review some
earlier research in this light. Below we review five existing discovery systems. In each case,
we begin with an overview of the system. We then consider which of the operators that
system employs to discover empirical laws, and examine the conditions under which it
applies those operators. We will find that the existing systems search only a small part of
the overall space we have defined, never using more than two of the six operators.

3.1 AM

Lenat (1977, 1978, 1982) carried out some of the earliest and best-known research on
machine discovery, so it seems appropriate to begin our review by examining his AM sys-
tem. The program begins with a set of some 125 concepts from elementary mathematics,
such as 'set', 'ordered pairs', and 'equality'. Using these as its base, AM defines new con-
cepts in terms of existing ones, arriving at familiar mathematical concepts such as 'natural
numbers', 'addition', 'multiplication', and 'prime numbers'. The system also generates
hypotheses that relate these concepts to each other, including the unique factorization
theorem and Goldbach's conjecture.

AM represents concepts using frame-like structures, each having facets such as name,
definition, and examples. The system uses some 250 heuristics (stated as condition/action
rules) to guide its search through the space of concepts. These heuristics fall into three
general categories - for generating new concepts, for filling in facets of existing concepts,
and for determining which task on the agenda to perform next.

Lenat's system incorporates two of our proposed operators - defining composite rela-
tions and defining classes of objects. For instance, AM defines the relation of 'addition' in
terms of more basic set relations, and then proceeds to define 'multiplication' as repeated
addition. The system defines object classes in a model-driven way, generating a new class
definition and then running experiments to determine which objects are members of that
class. Thus, it defines 'even numbers' to be those 'natural numbers' that can be divided
by 2, and then finds that 2, 4, 6, etc. are instances of this class.

Since AM searches a large space of relations and classes, it must restrict its attention
to interesting concepts. The system uses several heuristics to this end. One of the most
powerful of these rules states that if a relation has been defined in multiple ways, then
it is very interesting. For example, AM's searches lead it to define multiplication in four
different ways, and this in turn cause the system to devote considerable attention to this
concept. Another heuristic focuses AM's processing on object classes which have neither
too many nor too few elements. Thus, the system finds the cl iss of primes quite interesting,
since there are many examples of this concept, but not too many. In contrast, AM finds
the class of even primes to be uninteresting, since it has only one member.

Now let us examine how AM uses these two operators to discover the concept of
prime numbers. As we have mentioned, the system finds four alternative definitions for
'multiplication'. This results in a high interest value for the relation, leading AM to spend

10

w mm usmmmmm mameam m -A mnnn e u an|•

considerable time examining the concept. One of the system's many heuristics suggests
defining the inverse of an interesting relation. AM applies this rule to the current concept,
giving

ditvsors-of(X, Y) 4= multiplication(X, Y)- 1

The new relation 'divisors-of' is interesting by its association with multiplication, and
AM now invokes another heuristic that suggests looking at extreme cases of interesting
concepts. This leads to a number of new objects classes - numbers with zero divisors,
with one divisor, with two divisors (the class of primes), and with three divisors. The
first two classes turn out to have very few examples, and AM abandons them as a result.
However, the system finds that there are few (but not too few) examples of numbers with
two divisors and three divisors. Thus, both of these classes are considered interesting
enough for further processing.

Upon closer inspection, AM finds a number of relations between these concepts. For
instance, numbers with three divisors appear always to be the square of some prime number
(a number with two divisors). In addition, the system also finds that every natural number
can be factored into a unique set of prime numbers; this is the unique factorization theorem.
It also arrives at Goldbach's conjecture that every even number is the sum of two primes.
Thus, even though AM spends most of its effort in defining new object classes and relations,
it also has the ability to formulate qualitative laws based on these concepts.

AM's search covers only part of the problem space we have defined, but it nevertheless
has much of the flavor of an integrated discovery system. The program generates new
concepts incrementally, and it designs and carries out its own experiments. It uses these
experiments both to uncover qualitative relations and to test hypotheses once they have
been formulated. Moreover, AM's agenda mechanism provides a sophisticated strategy for
focusing attention and allocating effort. Given this sophistication, it seems surprising that
more of our operators did not emerge, but this may be a function of the mathematical
domain for which AM was designed.

3.2 BACON

Langley's BACON was another early machine discovery system, though it was actually
a series of systems that gradually evolved over the years (Langley, 1978, 1981; Langley,
Bradshaw, & Simon, 1983). The emphasis of this work was on general, weak methods for
discovering quantitative empirical laws. Given a set of numeric independent and dependent
terms, BACON carries out simple 'experiments' to gather data and then searches for one
or more empirical laws which summarize those data. The system has discovered a variety
of laws from the history of physics and chemistry, including the ideal gas law, Ohm's law
for electric circuits, Snell's law of refraction, and Black's heat law. Each of these laws is
represented as simple constancies linear relations, and this is where our operators come
into play. In order to state complex laws in such a simple format, the system must define
terms that make this possible.

To this end, BACON uses two of our operators - defining numeric terms and postu-
lating intrinsic properties. The system's top-level goal is to find some numeric term which

11

F-

has a constant value for the given data, or which is involved in a simple linear relationship.
In looking for such terms, BACON carries out a depth-first search through the space of

possible terms, with backtracking occurring when necessary. The program limits itself to
two types of numeric terms - ratios and products - but these can be applied recursively
to define more complex terms involving exponentiation.

Two main heuristics guide the search through the space of numeric terms. One of these
rules notes when the values of two terms increase together; in this case, BACON defines
the ratio of these terms (unless they are linearly related). Another heuristic notes when the
values of one term increases as those of another decrease; in this case, the system defines
the product of the two terms. Two final rules note constant values and linear relations;
these do not create new terms, but instead formulate empirical laws that incorporate the
terms.

For example, given the mean distance d for each solar planet along with its period
p, BACON's heuristics note that the values of these terms increase together. This leads
the system to define the ratio term X = d/p. Upon computing the values of X, BACON
notes that these values increase as those of d decrease, and this causes the program to
define Y = dX = d2 /p. When the values of Y are computed, they are found to increase
as those of X decrease, leading to the product XY = d3/p 2. The values of this term are
nearly constant across the planets, so BACON formulates a general law that summarizes
the original data. The system also includes methods for recursing to higher levels of
description in order to find laws involving multiple independent terms, but we do not have
the space to discuss them here.

The need for intrinsic properties arises when BACON encounters independent terms
with nominal (symbolic) values. Since the system cannot discover a numeric law from
symbolic data, it is forced to 'invent' a new numeric term. The values of the intrinsic
property are based on the values of the current dependent term. Thus, BACON finds
a linear relation between this dependent term and the intrinsic property as soon as the
latter is defined, but this relation is tautological. The system can take advantage of the
new term to formulate empirically meaningful laws only when its values are used in some
different context.

Let us consider an example of intrinsic properties from 18th century chemistry. When
Proust began to study the quantitative aspects of reactions, he discovered that a given
element always contributes the same percentage to the weight of the resulting compound.
Table 2 presents some idealized data which obey Proust's law of constant proportions. For
each reaction, the table lists the contributing element, the resulting compound, the weight
of the element WE, and the weight of the compound We.

Given these data, BACON first detects that the weight of the element increases with the
weight of t -u npound. This leads the system to define the numeric term X = WE/WC,
which ha'- instant value for a given element-compound pair. This ratio has a different
value for different pairs of substances, but since the element and compound terms take
on symbolic values, BACON cannot immediately formulate any further numeric laws. Its
response is to define the intrinsic property i-p(Element, Compound) = WEIWc and to

12

LL m m

associate the values of this term (which are based on those of the ratio WE/WC) with each
particular element/compound pair.* This intrinsic property corresponds to the constant
weight ration discovered by Proust.

Table 2: Discovering the law of constant proportions

Element Compound WE WC WE/WC

Hydrogen Water 10.0 90.00 0.1111
Hydrogen Water 20.0 180.00 0.1111
Hydrogen Water 30.0 270.00 0.1111
Hydrogen Ammonia 10.0 56.79 0.1761
Hydrogen Ammonia 20.0 113.58 0.1761
Hydrogen Ammonia 30.0 170.37 0.1761

In summary, BACON relies on two of our operators - defining numeric terms and
postulating intrinsic properties - and combines these operators in an effective manner.
However, the system clearly searches only part of the problem space we have defined,
particularly ignoring the importance of qualitative laws and the operators which support
their discovery. We would certainly not want to abandon the insights of BACON in future
discovery systems, but these insights are certainly incomplete.

3.3 ABACUS

Unlike BACON, which discovers only quantitative relations, the ABACUS system
(Falkenhainer 1985, Falkenhainer & Michalski, 1986) combines methods for quantitative
and qualitative discovery. ABACUS accepts data in a similar form to those processed
by BACON, though it does not require that terms be labeled as independent and depen-
dent. From these data, the system generates numeric laws with qualitative preconditions.
As a result, ABACUS can discover multiple laws which hold for different subsets of the
data. For example, if a data set contains both liquid and gaseous substances along with
their respective pressure, temperature, and volume, the program discovers the following
relations:

IF substance = gas THEN PV/T = constant
IF substance = liquid THEN no relation found

The first of these is equivalent to the ideal gas law, with the condition that the substance
be a gas stated explicitly; this version is a more cautious form that found by BACON.
The second statement reveals that no analogous law holds for liquics.** Falkenhainer and

* This is not the best example of an intrinsic property, since it does show how such properties
can contribute to non-tautological laws. However, it does convey the basic idea.
** This is actually a poor example to distinguish BACON from ABACUS, since the former could
actually arrive at similar laws using intrinsic properties if it were given substance as a nominal
independent attribute. However, ABACUS can also arrive at conditional laws for cases where
intrinsic properties cannot be used.

13

Michalski (1986) present a number of examples of useful preconditions on scientific laws.

ABACUS uses one of our proposed operators, defining numeric terms, to discover
quantitative relations between observable attributes. Like BACON, the system searches a
space of numeric terms, looking for some term that takes on constant value; the difference
is that this term need be constant for only some of the observations. In the example
above, the numeric term X = PV/T was constant for a subset of the data. In addition to
products and ratios, ABACUS also defines new terms by taking sums and differences of
existing terms.

The discovery system allows irrelevant variables, but these increase the size of the
search space considerably and a simple BACON-like search strategy becomes ineffective.
In response, ABACUS employs two new algorithms, proportionality graph search and sus-
pension search. These search methods will converge on constant numeric terms in a rea-
sonably efficient manner, and include the ability to handle a certain degree of noise. We
will illustrate proportionality graph search as it applies to the ideal gas law.

Suppose that we extend the original data set for the discovery of the ideal gas law (the
temperature T, volume V, and pressure P of a gas) to include the additional variable M.
Further suppose that M is proportional to the volume V, even though this relation is irrel-
evant to the ideal gas law. ABACUS uses the observations to construct a proportionality
graph like that shown in Figure 1 for the ideal gas data. The nodes of this graph represent
observable variables, while a link between two nodes indicates that these two variables are
either inversely or directly proportional to each other. The absence of an edge means that
two variables are not related. In the figure, there is an edge between V and P because
these two variables are inversely proportional to each other. There is no edge between the
nodes for M and T, since there is no relation between these variables.

P T

V

Figure 1: Proportionality Graph for Ideal Gas Law

After ABACUS has constructed this graph, it determines the largest cycle set or bicon-
nected component. For graph in Figure 1, the largest such set is {P, V, T}. The system
then focuses its attention on the members of this set in its attempt to find numeric laws,
performing a depth first search with backtracking to find same new term with constant
or semi-constant values. A set of heuristics similar to the one used in BACON aids this
search. If the largest cycle fails to exhibit such a term, ABACUS defines a new term using
variables M and P, includes this term into the set, and continues the search. Falkenhainer
and Michalski argue that irrelevant variables are likely to be excluded from such cycles,
so that this search will find the desired numeric term more efficiently than a simple depth

14

first search.

Using this search method, ABACUS quickly converges on the constant numeric term
X = PV/T, despite the presence of the irrelevant variable M. However, the authors
concede that proportionality graph search encounters difficulty when complex terms (such
as sums of products) are involved. If ABACUS cannot find a useful numeric term using this
method, then it resorts to a second search algorithm - suspension search. This process
resembles beam search but allows backtracking through the space of terms. Using this
approach, the system can discover more complex laws such as conservation of momentum.

ABACUS does not explicitly use our second operator, postulating intrinsic properties,
in its search for empirical laws. However, the system's use of logical preconditions leads
to effects very similar to intrinsic properties. Consider again the data in Table 1, which
led BACON to define the intrinsic property of combining weights and thus to Proust's law
of constant proportions. Given the same data, ABACUS would note a relation between
the weight of the element WE and the the weight of the compound We and thus define
the ratio X = WE/Wc. The system would then notice that this term has semi-constant
values, and would set about determining the conditions under which each value occurred.
This would produce the following pair of laws:

ClassA IF [compound = Hydrogen]
THEN WE/WO = 0.1111

ClassB IF [compound = Ammonia]
THEN WE/WC = 0.1761

These state that different values of WE/WC are associated with different compounds.* In
some sense, these associations are equivalent to those stored by BACON when it postulates
intrinsic properties and infers their values. However, there are two important differences.
On the one hand, BACON has the ability to retrieve its intrinsic values at some later
time and incorporate them into other laws. On the other, BACON can only form intrinsic
properties when the nominal variables are under experimental control, while ABACUS can
form conditional expressions from observational data.

As we have seen, ABACUS combines methods for qualitative and quantitative discov-
ery, and in this sense it approaches the type of integrated discovery system that is our
ultimate goal. However, there are two quite different notions of the term 'qualitative'.
Although ABACUS finds qualitative conditions on numeric laws, it does not discover laws
involving qualitative relations such as those found by the early chemists. The system does
not define classes of objects (even though its law-finding methods provide support for this
activity), nor does it define composite relations or classes of such relations. Thus, like the
other systems so far reviewed, ABACUS searches only a portion of the problem space that
we have defined.

We should mention one further point that involves both ABACUS and BACON. As
we explained earlier, the operator for defining composite objects can prove quite useful in

* If the data had included different elements as well, ABACUS would have included these in the
conditions it discovered.

15

ml mmm mm m m J m m~, -AI

stating laws such as conservation of momentum. Yet both ABACUS and BACON discover
these laws without using this operator. The reason for this apparent inconsistency is
that both systems ignore the distinction between objects and their attributes. Rather,
they represent data as a conjunction of attribute-values and make no effort to associate
attributes with particular objects. In the momentum case, this leads the system to view
the given data - the momenta and velocities of the two colliding objects - as belonging
to one 'object' rather than two separate objects. Some versions of BACON (Langley,
Bradshaw, & Simon, 1982) used subscripts to aid in the search for conservation laws, but
this was a weak attempt at best. We believe that future discovery systems would do well
to clearly distinguish between objects and their attributes, and to form composite objects
when considering a conservation law.

3.4 GLAUBER

As we have already mentioned, much of the effort in an emerging scientific discipline is
devoted to classifying objects and to formulating qualitative laws. Langley, Zytkow, Simon,
and Bradshaw's GLAUBER (1986) addresses both of these tasks. This system accepts as
input a set of qualitative facts, such as taste(HCI, sour) and reacts({HCl NaOH} {NaC1}).
GLAUBER transforms these facts into qualitative laws in which specific objects have been
replaced by more abstract classes, such as 'acids' and 'alkalis'. These laws also include
universal or existential quantifiers that specify the generality of the law.

GLAUBER uses only one of the operators we have described in its formulation of qual-
itative laws - defining classes of objects. Unlike AM, which first constructs an intensional
definition for some class and then generates examples, GLAUBER observes objects in the
environment and classifies them based on common features and relations. For example,
if a number of objects have the same taste (say sour), the system may define a new class
(acids) with these objects as members. GLAUBER then generates a qualitative law which
has the same form as the original facts, but in which the class name has replaced the spe-
cific objects. Such a law is guaranteed to hold for all members of the class, and so can be
universally quantified. However, GLAUBER also substitutes the class for its members in
other facts, and in these cases the system must empirically determine whether a universal
or existential quantifier is appropriate.

Let us consider GLAUBER's discovery of the concepts of acids, alkalis, and salts. Al-
though the 17th century chemists did not focus on quantitative data, they had considerable
qualitative knowledge of substances. This included information about the tastes of various
substances, as well as the reactions in which they took part. For example, they knew
that HCI had a sour taste and that this substance reacted with NaOH to form the new
substance NaCI. These facts and others led the early chemists to group substances like
HCI, NaOH, and NaCL into the classes of acids, alkalis, and salts.

16

Table 3: States generated by GLAUBER in the discovery of acids, alkalis and salts

(a) Initial State

reacts({HCI NaOH), {NaCl}) taste(NaNO3 , salty)

reacts({HCI KOH}, {KCI}) taste(KNOa, salty)

reacts({HN03 NaOH}, {NaN03}) taste(NaCl, salty)

reacts({HNO KOH}, {KNO}) taste(KCI, salty)

taste(HCI, sour) taste(NaOH, bitter)

taste(HN03, sour) taste(KOH, bitter)

(b) Intermediate State

SALTS = {NaCl, KCL, NaNO3 , KNO 3}

3 z E SALTS E reacts({HCI NaOH}, {x}) taste(HCI, sour)

3 x E SALTS B reacts({HCI KOH}, {x}) taste(HNO3 , sour)

3 z E SALTS a reacts({HNO3 NaOH}, {x}) taste(NaOH, bitter)

3 z E SALTS 3 reacts({HNO3 KOH},{x}) taste(KOH, bitter)

V x E SALTS taste(z,salty)

(c) Final State

SALTS = {NaCI,KCI,NaNO3 ,KNO3} V z E SALTS taste(x, salty)

ACIDS = {HCI, HN0 3} V z E ACIDS taste(x, sour)

ALKALIS = {NaOH,KNOH} V z E ALKALIS taste(x, bitter)

V z E ALKALIS V y E ACIDS 3 z E SALTS 3 reacts({x y}, {z})

Table 3 (a) presents a similar set of facts that were given to GLAUBER. Examining this
initial knowledge base, GLAUBER notices that four of the objects (NaCl, KC1, NaNO 3,
and KNO3) have a salty taste, and defines a class with these four objects as mem-
bers. For the sake of clarity, let us call this class 'salts'. Upon defining this class,
GLAUBER replaces instances of the class with the name of the class; this substitution
occurs in all facts and laws known to the system. Thus, GLAUBER adds the class
SALTS = (NaCl, KCl, NaNO 3, KNO 3} to memory, along with the tautological law
V x E SALTS taste(x, salty). In addition, the program replaces the salts occurring in re-
actions with the name of this class, giving a number of more abstract reactions. However,

17

u i, _i i~~Lli m i m i i l,.

since only one instance of each such pattern occurs, GLAUBER decides on an existential
quantifier in each case. The resulting knowledge base is shown in Table 3 (b).

At this point, GLAUBER proceeds to define the class ACIDS = (HCI, HNO 3}, based
on the observation that both HCl and HNO 3 have sour tastes. This time, after substitution
occurs, the system decides that universal quantification is justified for the reaction laws
and it proposes two general laws:

V x E ACIDS 3 y E SALTS - reacts({x NaOH}, {y})

V x E ACIDS 3 y E SALTS 3 reacts({x KOH}, {y})

However, these new laws have identical forms, leading GLAUBER to define a third class of
substances, ALKALIS = {NaOH, KOH}. This results in the general reaction law shown
in Table 3 (c), along with another law describing the taste of alkalis. At this point, the
system has successfully summarized all of the original data, so it halts with three classes
and four qualitative laws.

Jones (1986) has described NGLAUBER, a successor to GLAUBER that improves
on many aspects of the initial system. For instance, GLAUBER required all data to be
present at the outset, while NGLAUBER processes data incrementally. In addition, Jones'
system is able to distinguish between unobserved facts and disconfirming evidence, such
as missing and failed reactions. Although the two systems employ the same operator
for defining object classes and formulate similar laws, NGLAUBER uses quite different
heuristics than its predecessor. The earlier program operated nonincrementally because it
relied on frequency information to decide which classes to form. In contrast, NGLAUBER
forms whichever classes are suggested by the most recent data it has examined, but has
the ability to backtrack if these classes predict disconfirming evidence. This seems a more
plausible model of human scientists than does Langley et al.'s system.

Although GLAUBER and NGLAUBER employ only one of the operators that underly
empirical discovery, they fill an interesting niche nonetheless. They show that data-driven
heuristics can be used to propose useful classes. They also suggest that some classes
are best characterized not by independent features, but by relations between the classes
themselves. Finally, the systems point out the need for distinguishing between universal
and existential quantification in qualitative empirical laws. We believe that all of these
features should be kept in mind in designing more complete, integrated discovery systems.

3.5 OPUS

Another important form of empirical discovery is known as conceptual clustering. Basi-
cally, this is the task of taxonomy formation, with the added constraint that one formulate

an intensional description for each class in the resulting conceptual hierarchy. Since Michal-
ski and Stepp (1983) first defined this problem, a number of conceptual clustering systems
have been developed and tested. Rather than attempting to review all of these programs
in an already lengthy paper, we will focus on Nordhausen's (1986) recent OPUS system,
which has a number of features that are interesting from our perspective.

18

As we have seen, objects can be described not only in terms of independent attributes,
but also through their relation to other objects. OPUS uses both kinds of information to
formulate new classes and to find qualitative laws describing those classes. OPUS inputs
a set of objects described by nominal attributes such as color and size, along with binary
relations between objects, such as eat or parent. From these data, the system produces a
hierarchical classification tree along with a concept description which uniquely identifies
each class.

In constructing this taxonomy, OPUS uses two of the operators we have proposed
- defining new classes and defining composite relations. The system defines composite
relations in terms of existing relations and simple attributes such as color or size. For
example, it combines the binary relation offspring(X, Y) and the attribute color(X,c) to
define the composite relation

offspring-color(X,c) 4- offspring(X, Y) & color(Y, c)

Once OPUS has defined composite relations, it uses them as attributes during the
process of defining object classes. For instance, offspring-color can be used to distinguish
peas which have only yellow offspring and peas which have both green and yellow offspring.
OPUS classifies objects using both primitive attributes (such as color) and attributes that
have been derived from relations.

OPUS builds its classification tree in a top-down manner. At each branch the system
divides objects into mutually exclusive subclasses, with members having some value of an
attribute in common. For example, if the attribute 'color' is used to partition objects,
OPUS divides the objects into classes with members of the same color. The program
then selects that attribute which best divides the current object set according to two
criteria. The simplicity criterion favors classes with simple descriptions, while the inter-
cluster difference criterion promotes classes with different properties. If none of the existing
attributes can distinguish between the existing set of objects (i.e., if members of all classes
have the same value for the given attributes), then OPUS defines new attributes and uses
these to define new classes. This process is recursive, so that defined attributes can be
used as the basis for more complex attributes.

Now that we have described OPUS in the abstract, let us examine its use of the two
operators in rediscovering the classes of hybrids and purebreds from the early days of
genetics. In this domain, OPUS is provided with information about the color of various
peas (green or yellow), along with the parent-child relations between different peas. For
example, pea A might be described as color(A, green) and parent(A,B). At the outset,
OPUS uses the primitive attribute color to define the classes of yellow peas and green
peas. But because no distinctions can be made on the bas:s of existing attributes, the
system defines two composite relations for this purpose: offspring-color(X,c) and parent-
color(X,c).

Both relations can then be uscd as attributes to refine the existing classes. In this
case, the attribute offspring-color does a better job of partitioning the objects, so OPUS
selects this term to extend the classification tree. As a result, the system refines the

19

class of yellow peas into two subclasses - those which produces only yellow offspring and
those which produce both yellow and green offspring. At this point, OPUS has not only
formulated the classes of hybrids and purebreds; it has also described these classes using
concepts very similar to the ones proposed by Mendel.

Elements of the class of purebreds have purebred offspring.
Elements of the class of hybrids have purebred and hybrid offspring.

OPUS continues this process, further refining the purebred class into those with hybrids
as parents and those with purebreds as parents. Figure 2 presents the final taxonomy
generated by the system; this is very similar to the organization proposed by Mendel in
the 1860's.

[Class0 (all objects)]

Figure 2: Classification tree equivalent to Mendel's definitions

OPUS is interesting along a number of dimensions relevant to our framework. Like
AM, this system defines both object classes and new relational terms. However, it applies
these operators in quite different contexts and to quite different ends than did Lenat's
early system. Nor is OPUS a traditional conceptual clustering system, since it focuses
on relations between objects as well as isolated features of those objects. But the most
interesting aspect of the system lies in the interaction between the two operators. OPUS
defines composite relations in order to support the creation of new object classes, just as
BACON postulates intrinsic properties in order to allow the creation of useful numeric
terms. This is precisely the type of interaction we would hope for in an integrated system,
in which each of the six operators feed off the results of the others to create powerful
synergies that aid the discovery process.

3.6 Summary

In this section, we reviewed five existing empirical discovery systems in the light of
our framework. We summarize the results of this analysis in Table 4. Cells marked with
crosses indicate operators that clearly exist within the specified system, while triangles
indicate ambiguous cases where the operator is absent, but where the system achieves a
similar effect indirectly. The most obvious characteristic of the table is its sparsity; very

20

few of the possible cells are occupied. In fact, none of the systems incorporate more than
three of the operators, even with a liberal interpretation.

Table 4: Discovery systems and their operators

System numeric intrinsic composite class of composite class of
System term property object objects relation relations

AM x x

BACON x x A

ABACUS x A A

GLAUBER x

OPUS x x

This means that each of these AI discovery systems search only a portion of the problem
space of defined terms that we described earlier, and this limits the class of laws that each
system can discover. This in turn suggests a natural goal for future research - the design
and construction of an integrated discovery system that employs all six operators to search
the entire problem space. In the following pages, we describe our plans for such a system.

4. An Integrated Model of Empirical Discovery

Although we believe our framework for empirical discovery has helped to clarify and
unify earlier work in the area, it has only limited usefulness. Our ultimate goal is to
translate this framework into an integrated system discovery system. Only by following
this path can we determine whether our operators are necessary and sufficient for empirical
discovery, and identify heuristics to direct the application of these operators in an intelligent
fashion. In this section, we detail our plans for an integrated discovery system (IDS) that
incorporates all six of the operators we have proposed. However, in order to realistically
simulate the discovery process, one needs some environment which is separate from the
discovery system, but which that system can inspect and manipulate. We are implementing
such an environment for the domains of early physics and chemistry which obeys the major
laws of these domains. Below we describe the environment in some detail, before turning
to our designs for the discovery system itself.

4.1 Objects and Attributes

The simulated environment contains a set of objects, each having a variety of attributes.
These attributes are similar to those available to early physicists and chemists, such as
volume, color, taste, shape, location, temperature, and mass. Many of these attributes are
numeric in nature, but others (like color and taste) are usually viewed as nominal (sym-

21

I I.

bolic). However, we have also chosen to represent these as numeric terms with real values,
since we feel this more closely reflects the situation encountered by the early scientists.
Thus, the taste of an object involves three sub-attributes - saltiness, sourness, and bitter-
ness - each taking values from zero to one. We use similar sub-attributes to represent the
colors of objects.

A few attributes seem genuinely nomi il, at least for our purposes. For instance, the
state of an object can be solid, liquid, or gaseous. These values represent qualitatively
different aspects that one can determine through direct inspection. Similarly, the shape of
an object takes on the nominal values box, sphere, cylinder, or irregular. Although these
certainly do not exhaust the possible shapes occurring in the physical world, they provide
enough variety to allow interesting behavior.

In addition, primitive objects can be connected to form more complex composite ob-
jects.* Thus, one can specify that two or more primitive objects are parts of a complex
object. These components must move together and are affected together along other dimen-
sions (such as temperature). The environment supports three forms of object composition.
Generic composition simply specifies that two objects are part of a composite object, but
the two other forms specify additional features. Composition by containment specifies
that one object is contained by another. This is essential if our system is to replicate
early chemical discoveries involving gases and liquids. Similarly, two containers may be
connected by a conduit, allowing the contents to move from one object to the other. These
relations let one construct reasonably complex systems of objects. Finally, two objects can
touch one another; this relation does not define a composite object, but many laws include
adjacency as an application condition.

An important aspect of the environment is that it changes over time. Thus, the
temperature of object A at one instant may differ from its temperature at the next instant.
Some attributes may well have constant values, but this is something the system must
discover for itself. In other cases, the system must formulate laws that describe an object's
change over time. In addition, new objects may enter the world and existing objects may
disappear (as in chemical reactions). The discovery system must be able to summarize
these qualitative changes as well as quantitative ones. These possibilities will force us
to handle laws and explanations of a quite different nature than those we addressed in
previous research.

4.2 Gathering Data and Performing Experiments

The discovery system will observe the world through a set of sensors. These are
passive in nature, simply letting the system inspect the value of an object along a certain
dimension; they correspond to primitive measuring instruments, such as rulers, scales,
and thermometers. In general, one sensor exists for each observable attribute. Thus,
at any given time, the system can measure the following properties of any given object:
mass, temperature, color (lightness, hue, saturation), taste (saltiness, sourness, bitterness),

* We are talking here about the physical combination of objects. The reader should not confuse

this with our third operator, which involves the logical composition of objects.

22

location (x and y coordinates), size (radius; length, width, depth), texture, shape, and
state.

Some sensors can be applied only to certain objects. For instance, the system can
inspect the radius of spherical objects and the length, width, and depth of boxes, and
from this one can easily compute their volumes. However, one cannot directly measure
the dimensions of irregular objects, and this makes the derivation of volume more difficult.
Restrictions also apply to the components of complex objects. The system can measure the
color, temperature, and locations of the components independently, but it cannot directly
measure these values for the composite object. On the other hand, it can measure the
mass of composite objects, but not the mass of their components. The system may be able
to infer these values, but this requires intelligent behavior rather than simple sensing.

Most earlier discovery systems were provided with data, but in this environment one
must actively gather information. If the system wants to measure the mass of object A
during some time cycle, it must explicitly call on its mass sensor with A as the argument.
Moreover, the number of such measurements that can be made during a given cycle is
limited.* Thus, the system must focus its attention on objects and aspects of those objects
that it decides are important.

In addition to sensors, the simulated environment also supports active processes called
effectors. These let one affect objects directly, including actions such as changing the
location of an object, breaking an object into two equal components of the same type,
and heating an object. Like sensors, the effectors require an intentional act on the part
of the system. These actions also let the system construct composite objects using the
composition relations (generic, containment, and connection) described earlier. Thus, one
can construct simple experimental configurations by rearranging objects and their relations
to each other.

More important, one can run simple experiments by creating initial conditions and
then using sensors to observe changes over time. For instance, one might place two objects
in contact and heat them both. In some cases, a new object with different features will be
created, and the mass of this object will increase over time as the masses of the original
objects decreases. In this way, we can simulate simple chemical reactions.

Note that such experiments provide a way of defining new measuring instruments.
Thus, one might measure the volume of liquid held in some container, place an irregular
object in the container as well, and then measure the resulting volume. Archimedes used
a similar strategy to measure the volumes of irregular objects, and this ability provides an
interesting range of behaviors that have been largely ignored in work on machine discovery.
Another example of a new 'measuring instrument' involves sensing the temperature of an
object, heating it at constant rate for some time, and resensing the temperature. Together
with the elapsed time, these temperatures let one estimate the specific heat of the object.

Now that we have described the environment in which our discovery system (IDS) will

* We plan to start by allowing 10 sensors to be applied simultaneously, but we may reduce or

increase this limit based on our experience.

23

operate and the primitive actions it has available for interfacing with that environment,
let us turn to the system itself. We have divided our discussion into two parts, the first
dealing with qualitative discovery and the second handling the formulation of quantitative
laws. We will see that all six of our operators are embedded within the design of IDS, and
that the system's methods for numeric discovery build naturally upon the qualitative laws
it constructs at the outset.

4.3 Inferring Qualitative Schemas from Behavior

Before it can discover numeric relations, our discovery system must first determine the
basic types of events that occur in its surroundings. The system will begin by examining
individual objects, looking for terms that are constant over time. Most attributes of objects
will be constant over time until some effectors are applied. Based on these constancies, the
system will generate an initial taxonomy, grouping similar objects together. This activity
corresponds to the operator for defining classes of objects. The first such classes will be
chemical substances, the members of which have the same color, texture, taste, and density
(a defined term), but which have different masses and volumes. More abstract classes such
as metals (which are smooth and shiny) and acids (which taste sour) may also be defined,
but members of these groups will have fewer features in common.

Once an initial set of classes have been identified in this manner, the system will use
them in designing experiments and in generalizing the results of those experiments. This
involves applying effectors to members of different groups and observing the results. Let
us consider a simple experiment as an example. Suppose one fills container C with liquid
L, to height HI and fills container C2 with liquid L2 (of the same class) to height H2, and
then connects these two containers with an open conduit. As time passes, one observes the
heights of liquid in each container, noting that one level increases and the other decreases
until the two levels are equal, having reached equilibrium.

H, C2 Ci C2 C1L C2
C1Li > L2 2 1LI = L2 2 ,LI < L2 C

ALI < 0 ALI = 0 ALI > 0
AL 2 > 0 AL 2 = 0 AL 2 < 0

Figure 3: Qualitative schema for fluid flow

If we focus on the qualitative aspects of this situation, only two classes of states exist.
The first class can be described by three relations: Ll > L 2, ALI < 0, and AL 2 > 0.
Similarly, the second (equilibrium) class of states can be described by different relations:
Li = L 2, ALI = 0, and AL 2 = 0. These classes can be easily induced from the manner
in which the system changes over time. Moreover, one can also infer that the first class of
states leads to the second class; in other words, any non-equilibrium situation is gradually
transformed into an equilibrium situation. We represent this qualitative schema graphically
in Figure 3; the illustration includes the alternative situation, in which one begins with
LI < L2.

24

The representation we have used for this qualitative schema is very similar to that
proposed by Forbus (1984) in his qualitative process (QP) theory. However, note that
we have no model of the processes responsible for the transition between states in our
schema. Rather than inferring the schema from process knowledge (as Forbus does with
his envisionment mechanism), IDS will induce the schema by observing changes in the
environment over time. In some sense, our schema represents process knowledge in its own
right, but uses a form quite different from that used in QP theory.

Now let us consider a more complex example involving a chemical reaction. Suppose
we move two objects 01 and 02 into contact with each other, and that a new object 03
is generated as a result. Moreover, imagine that the masses of 01 and 02 decrease over
time until O reaches zero (and thus disappears), while the mass of 03 increases in the
meantime. Finally, suppose the reaction ends with the masses of 02 and 03 remaining
constant over time.

As before, we can represent these changes with a qualitative schema like the one shown
in Figure 4. The first box shows the initial class of states during which Oi and 02 are
being moved closer together. Letting D be the distance between two objects and M be the
mass of an object, a number of change relations hold during these states: AD(0 1 , 02) < 0.
AM(0 1) = 0, and AM(0 2) = 0. Note that we include terms with constant derivatives,
provided these derivatives change elsewhere in the schema. After the two objects have
been brought together, the new relation AD(0 1 , 0 2) = 0 replaces AD(0 1 , 0 2) < 0, since
the relative positions of the objects are constant.

The transition from the second class of states to the third class introduces the new
object 03. We believe that the creation or destruction of an object is always sufficient
justification for establishing state boundaries. Moreover, the qualitative relations have
changed again. During this class of states, the distances between objects remain the
constant zero, but the masses change: AM(0 1) < 0, AM(0 2) < 0, and AM(0 3) > 0. In
the transition to the final state-class, the object 0 is destroyed, and the masses of 02 and
03 remain constant during these states. Taken together, these successive state descriptions
form a qualitative description of the events that occur during a simple chemical reaction.

State 1 State 2 State 3 State 4

D(O,02)>O D(0 1 ,D 2) = 0 D(0 1 ,,D2)=O
AD(0 1 ,0 2) > 0 AD(0 1,0 2) = 0 AD(0 1,0 2) = 0 M0 1)= 0

AM01) < 0 &M 3 == 0 = o = o AM(02J = 0
AM0 2) =0 AM0 2 = 0 AM(03)2> 0

Figure 4: State description of chemical reaction

25

A;lI

Although IDS will form such qualitative schemas on the basis of a single experiment,
note that the resulting description is quite general. In fact, one can view the above process
as defining a composite relation; this is one of the six operators we discussed earlier.*
Thus, IDS might use the name reacts to refer to the qualitative schema in Figure 4,
and specify a successful instantiation of the schema involving objects O6, 07, and 09 as
reacts(0, 07, O9). Such a representation could be passed directly to a GLAUBER-like
subroutine, which would define new classes of objects and formulate qualitative laws.

Of course, one must still carefully select the objects used in the experiments to max-
imize the likelihood of useful results. However, recall that IDS will have already grouped
objects into initial classes based on common features, and it can use these classes to con-
strain the process of experimentation. For instance, the system might decide to combine
members of the class of sour-tasting objects (acids) with each other, but no reaction would
occur in these cases and it would give up after a few unsuccessful attempts. However,
the system would have more success when combining acids with members of the bitter-
tasting class (alkalis). Moreover, the outputs of these reactions (salts) may never have
been observed before, giving IDS a new class of objects to use in other experiments.

4.4 Finding Quantitative Laws

Once a qualitative schema has been formulated, it provides the context within which
numeric laws can be framed. One of BACON's drawbacks was that it failed to specify the
situations under which its quantitative laws held, and IDS's qualitative schemas provide
a formalism for doing this. In particular, each of the qualitative relations that occur in
the schema may be transformed into a quantitative law, which is then attached to that
class of states. For instance, in our equilibrium example we found that the level of one
liquid decreased as the level of the other decreased. A numeric law might specify the exact
rates at which these changes occurred. Another numeric law might state the final level of
equilibrium as a function of the initial levels of the liquids.

Thus, IDS would repeat the same 'experiment' with different numeric parameters,
instantiating the same qualitative schema in different ways. In the equilibrium example,
the system could fill the containers to different initial levels and observe the resulting rates
of change and equilibrium states. In the chemical reaction example, it could not use the
same objects, since these are transformed during the reaction, but it could use the same
classes of objects (such as ammonia and sulfuric acid). In this case, it would vary the
initial masses involved in the reaction and observe the masses remaining afterwards.

We envision IDS using BACON-like heuristics to direct the search for numeric laws.
The system would consider the product of two terms if they increase together and consider
their ratio if one increases as the other decreases. Our experience with BACON suggests
that such heuristics are quite robust even in the presence of significant noise, provided the

* In some sense, the generality of these schemas makes them classes of relations. Rather than

starting with specific schemas and forming more general ones, we envision IDS as starting with very
general relations which share the same qualitative descriptions. The system would then gradually
form more specific versions of these schemas that differ in their quantitative features.

26

laws involve only a few parameters. In addition, once IDS has discovered a numeric law
for one object/class or pair of objects/classes, it will predict that the same law will hold
for other objects/classes, even though the numeric parameters differ. When this occurs,
the system will associate each value with the object or class, storing it as an intrinsic value
that may be retrieved in other situations as well. Thus, IDS will include two more of
the operators for empirical discovery - defining numeric terms and postulating intrinsic
properties.

Let us consider the example involving chemical reactions in more detail. Suppose IDS
places an object from the nitrogen class into contact with another object from the oxygen
class, and that the object which emerges from the reaction has features of the nitric oxide
class. Further, suppose the system runs this same basic experiment with different amounts
of nitrogen (say 1.0 gram, 2.0 grams, and 3.0 grams) while holding the amount of oxygen
constant at 6.0 grams. Each of these experiments will obey the qualitative schema shown in
Figure 4, with object 03 (nitric oxide) being created and object 01 (nitrogen) disappearing.

Upon examination, IDS would find varying amounts of oxygen in each case (4.86 grams,
3.72 grams, and 2.58 grams). Comparing these values to the masses of nitrogen used in
each case, it would note a linear relation with slope -1.14 and an intercept of 6.0. Varying
the initial amount of oxygen causes the intercept to vary, but the slope remains constant at
-1.14. This constant term corresponds to the combining weight of oxygen with respect to
nitrogen when these two chemicals combine to form nitric oxide. Based on this constancy,
the system would define an intrinsic property and associate this particular value with the
nitrogen-oxygen-nitric oxide triple.* Different intrinsic values for this term would be found
for other chemical reactions that obeyed the same qualitative schema.

Taken together, the linear relation and intrinsic property specify a numeric law that
describes the quantitative behavior of the schema in Figure 4. This law relates the M(0 2)
term occurring in the final class of states to the M(0 1) term occurring in the original
state-class. The IDS system would discover similar laws relating the final value for M(0 1)
(when this object remains) to the initial value of M(0 2), and relating the final value for
M(0 3) to the initial values for M(0 1) and M(02).** These laws correspond to Proust's
law of constant proportions. We have not considered the changes that occur in volume
along with changes in mass, but if IDS focused on this term as well, it would also arrive
at Gay-Lussac's law of combining volumes.

Although BACON rediscovered both Proust's and Gay-Lussac's laws, it did so in a
much different form than just described. Both its data and its laws were stated in very
abstract terms, divorced from any description of the physical situation involved. In the
new framework, the data consist of instantiations of the given qua!tative schema, and the

* Rather, it would define a composite object with nitrogen, oxygen, and nitric oxide as compo-

nents, and associate the intrinsic value with this new object. This constitutes another of our six
operators.
** In fact, the procedure of combining two objects through a chemical reaction and measuring

the slope of the line relating their masses can be viewed as a new, higher level sensor for measuring
combining weights. In some sense, the system will have defined a new measuring instrument.

27

laws relate numeric terms that occur in that schema. In addition to providing a context
for numeric laws, such schemas also make possible a new class of relations that BACON
did not consider - laws describing rates of change. Since the initial qualitative relations
are described in terms of derivatives, it seems natural for the quantitative component of
IDS to identify the constants associated with these derivatives, and (if they exist) to store
them as intrinsic properties of the objects or classes involved in the reaction. We plan to
explore methods for discovering such laws as well, though we have not yet formulated the
details.

4.5 Summary

In this section, we outlined our plans for IDS, an integrated discovery system that
instantiates the framework we proposed earlier in the paper. The system will interact with
a simulated physical world through a set of sensors and effectors, and these will let IDS
implement simple experiments and design new measuring instruments. In addition, the
environment will change over time, forcing IDS to represent and discover types of laws that
earlier machine discovery systems have ignored. The program will focus first on defining
useful classes of objects, as well as determining qualitative schemas that describe changes
over time. Once these schemas have been established, they will provide the context for
discovering numeric laws.

Although our concern here has been with empirical discovery, IDS's schema represen-
tation also suggests an approach to theory formation. We have focused on empirical laws
that deal with macroscopic events in which one can directly observe objects and changes in
those objects. However, much of scientific discovery involves formulating explanations of
laws and behavior in terms of structures and events that cannot be observed. The caloric
theory and the kinetic theory of gases are two well-known examples of such explanations.
Basically, we believe that explanatory theories can be formed through a process of anal-
ogy with schemas based on macroscopic phenomena. These analogies are cued by similar
qualitative changes, and lead one to infer physical structure (such as the coloric fluid) that
are not directly observable.

We do not have the space to consider this process in detail, and our ideas on theory
formation are still rather vague in any case. But we find it encouraging that the notion of a
qualitative schema may prove useful in theory formation as well as during the discovery of
empirical laws. This suggests that our design for IDS will prove a fertile one for modeling
the process of discovery.

5. Conclusions

Scientific discovery is a complex phenomenon involving many interacting components.
Even the process of empirical discovery is sufficiently complex that earlier research on
machine discovery has addressed only parts of the overall task. In this paper, we presented
a general framework for empirical discovery that we hope will further our understanding
of this process. Like much of the work in AI and machine learning, our framework is based
upon the notion of a problem space, and we have spent much of the paper describing the

28

operators that define that space. But rather than focusing on operators for law discovery
per se, as one might expect, we focused instead on operators for defining new terms. There
is ample precedent for this, since the existing machine discovery systems spend more effort
in finding useful terms than they do in finding empirical laws.

We proposed six types of terms that prove useful in empirical discovery, each with an
associated operator responsible for its definition. We attempted to justify each of these
types with examples from the history of science, and we also used historical data to suggest
a possible ordering on the operators. We found that all but one of the operators had been
used in existing machine'discovery systems, but that none of these systems employed more
than three of the operators. In other words, previous research on machine discovery has
limited itself to small portions of the total problem space. This has been a useful strategy,
but we feel the time has come to construct an integrated discovery system that explores
the entire space of terms and thus discovers a much wider range of laws.

In fostering this effort, we have constructed a simulated environment with which our
integrated system (IDS) will interact. The system will have sensors for measuring directly
observable attributes of objects, as well as effectors for running simple experiments. Objects
in the environment will change over time, introducing a factor that has been absent from
earlier Al work on discovery. Within this framework, IDS will begin by constructing
qualitative schemas (composite relations) that summarize changes over time. The system
will run experiments to determine which objects obey these schemas, and this in turn will
lead to classes of objects and relations.

Once such a qualitative schema is well understood, IDS will attempt to determine the
quantitative laws that govern that schema. This will lead the system to define numeric
terms, intrinsic properties, and composite objects. Moreover, the schema will provide a
context within which such numeric laws can be interpreted; this is quite different from
the abstract quantitative relations formulated by BACON and ABACUS. Finally, we have
plans to move beyond empirical discovery and into the realm of explanation, using the
same representation of events for empirical laws and scientific theories.

We believe this approach will lead to a robust and integrated system for empirical
discovery, but our work on this system is still in the planning stages. The most important
part of the effort remains; we must translate our ideas into a running program, and we
must test this system on a wide range of discovery tasks to ensure its power and generality.
However, we believe that our framework for empirical discovery has already proved useful
in both clarifying earlier work in the area and in proposing directions for more powerful
systems. But the approach we are taking with IDS is not the only instantiation of this
framework. We encourage our colleagues to develop other approaches to empirical discov-
ery that explore the same problem space using different methods. Working together, we
can achieve both a broader and a deeper understanding of the complex phenomenon called
'discovery'.

29

Acknowledgements

We would like to thank Randy Jones, Don Rose, and John Gennari for their comments
on an early draft of this paper and for discussions that led to the ideas presented therein.
This research was supported by Contract N00014-84-K-0345 from the Information Sciences
Division, Office of Naval Research.

References

Arons, A. B., The Development of Concepts of Physics: The Rationalization of Mechanics
to the First Theory of Atomic Structure, Addison-Wesley, Reading, MA, 1965.

Bradshaw, G. L., Langley, P., and Simon, H. A., "Studying Scientific Discovery by Com-
puter Simulation," Science, Vol. 222, No. 4267, Dec. 1983.

Dampier, W. C., A History of Science, MacMillian, New York, 1943.

Falkenhainer, B. C., "Proportionality Graphs, Units Analysis, and Domain Constraints:
Improving the Power and Efficiency of the Scientific Discovery Process," Proceedings
of the Eight IJCAI, Los Angeles, pp. 552-554, 1985.

Falkenhainer, B. C. and Michalski, R. S., "Integrating Quantitative and Qualitative Dis-
covery: The ABACUS System." To appear in Machine Learning 1986.

Forbus, Kenneth D., "Qualitative Process Theory," Technical Report No. 789, Al Lab,
MIT, 1984.

, "Interpreting Observation of Physical Systems," Report No. UIUCDCS-R-86-
1248, University of Illinois at Urbana-Champaing, 1986.

Jones, R., "Generating Predictions to Aid the Scientific Discovery Process." To appear in
Proceedings of AAAI-86, Philadelphia, PA, 1986.

Laird, J. E., Rosenbloom, P.S. and Newell, A., "Towards Chunking as a General Learning
Mechanism," Proceedings of AAAI-84, Austin, TX, pp. 188-192, 1984.

Langley, P., "BACON.1: A General Discovery System," Proceedings of the Canadian So-
ciety for Computational Society of Intelligence, Toronto, pp. 173-180, 1978.

, "Data-Driven Discovery of Physical Laws," Cognitive Science, Vol. 5, pp. 31-
54, 1981.

Langley, P., Bradshaw, G. L. and Simon, H. A., "BACON.5: The Discovery of Conservation
Laws," Proceedings of the Seventh IJCAI, Vancover, B.C., pp. 121-126, 1981.

, "Data-Driven and Expectation Driven Discovery of Empirical Laws," Proceed-
ings of the Canadian Society for Computational Society of Intelligence, Saskatoon,
Saskatschewan, pp. 137-143, 1982.

30

Langley, P., Bradshaw, G. L. and Simon, H. A., "Rediscovering Chemistry with the BA-
CON System," in Machine Learning: An Artificial Intelligence Approach, R. S. Michal-
ski, J. G. Carbonell, and T. M. Mitchell, Eds., Tioga Press, Palo Alto, CA, pp. 307-329,
1983.

Langley, P., Bradshaw, G. L., Zytkow, J. M., and Simon, H. A., "Three Facets of Scientific
Discovery," Proceedings of the Eighth IJCAI, Karlsruhe, W. Ger., pp. 465-468, 1983.

Langley, P., Simon, H. A., Zytkow, J. M., and Fisher, D. H., "Discovering Qualitative
Laws," Technical Report 85-15, Department of Information and Computer Science,
University of California, Irvine, 1985.

Langley, P., Zytkow, J., Simon, H. A., and Bradshaw, G. L., "The Search for Regularity:
Four Aspects of Scientific Discovery," in Machine Learning: An Artificial Intelligence
Approach, Vol. II, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (Eds.), Morgan
Kaufmann, Los Altos, CA, pp. 425-469, 1986.

Leicester, H. M. and Klickstein, H. S., A Source Book in Chemistry, Harvard University
Press, Cambridge, MA, 1963.

Lenat, D. B., "Automated Theory Formation in Mathematics," Proceedings of the Fifth
IJCAI, Cambridge, MA, pp. 833-841, 1977.

, "The Ubiquity of Discovery," Artificial Intelligence, Vol. 9, No. 3, pp. 257-285,
1978.

, AM: Discovery as Heuristic Search," in Knowledge-Based Systems in Artificial
Intelligence, R. Davis and D. B. Lenat, McGraw-Hill, New York, 1982.

Lenat, D. B. and Brown, J. S., "Why AM and EURISKO Appear to Work," Artificial
Intelligence, Vol. 23, No. 3, pp. 269--294, 1984.

Magie, W. F., A Source Book in Physics, Harvard University Press, Cambridge, MA, 1963.

Michalski, R. S., "Knowledge acquisition through conceptual clustering: A theoretical
framework and algorithm for partitioning data into conjunctive concepts," Interna-
tional Journal of Policy Analysis and Information Systems, Vol. 4, pp. 219-243, 1980.

Michalski, R. S. and Stepp, R. E., "Learning from observation: Conceptual clustering,"
in Machine Learning: An Artificial Intelligence Approach, R. S. Michalski, J. G. Car-
bonell, and T. M. Mitchell, Eds., Tioga Press, Palo Alto, CA, pp. 331-363, 1983.

Neves, D. M. and Anderson, J. R., "Knowledge Compilation Mechanism for the Automati-
zation of Cognitive Skills," in Cognitive Skills and Their Aquisition, Lawrence Erlbaum
Associates, Hillsdale, N. J., pp. 57-84, 1981.

Nordhausen, B., "Conceptual Clustering Using Relational Information." To appear in
Proceedings of AAAI-86, Philadelphia, PA, 1986.

Singer, C., A Short History of Science to the Nineteenth Century, Clarendon Press, Oxford,
1941.

31

The AQ15 Inductive Learning System:

An Overview and Experiments

by

2
Ryszard S. Michalski, Igor Mozetic', Jiarong Hong 2. Nada Lavrac

July 1986

Intelligent Systems Group
Department of Computer Science

University of Illinois at Urbana-Champaign

This research waz supported in part by the National Science Foundation under Grant No.
DCR 84-06801, the Office of Naval Research under Grant No. N00014-82-K-0186, the Defense

Advanced Research Project Agency under Grant No. N00014--K-85-0878, and by the Slovenc

Research Council.

'On leave from Jozff Sifffn I nitfttue. Ljubljana, Y91gotadia
'0n leave from Harbin fnsttue of Technology. Harbin The People'# Repubite of China

n, = m][, = i-A

A.P STRACT

AQ15 is a multi-purpose inductive learning system that uses logic-based, comprehensible

knowledge ret)resentation. It is able to incrementally learn attributional disjunctive concepts

from daia t, I 'nay contain erroneous or inconsistent examples, and can perform constructive

induction. lie latter means that the program uses background knowledge to generate ie%

attributes not present in the input data, and, if they pass a relevance test, employs them in the

learning process. In an experimental application to three medical domains, the program learned

decision rules that performed at the level of accuracy of human experts. A surprising and

potentially significant result is the demonstration that by applying the proposed method of rule

reduction and flexible matching (TRUNC), one may drastically decrease the complexity of ihe

knowledge base without affecting its performance accuracy.

Keywords: Knowledge Acquisition. Machine Learning, Inductive Inference,

Applications (Medicine)

1. INTRODUCTION

It is widely acknowledged that the construction of a knowledge base represents the ni;ijor
bottleneck in the development of any Al system. An important method for overcoming thiV
problem is to employ inductive learning from examples of expert decisions. In this knol,.dgu,

acquisition paradigm. knowledge engineers do not have to force experts to state their "knoN% ho%-
in a predefined representational lormalism. Experts are asked only to provide correct
interpretation of existing domain data or to supply examples of their performance. It is krio ,

that experts are better at providing good examples and counterexamples of decisions than at
formalizing their knowledge in the form of decision rules. Early experiments exploring trhi
paradigm have also shown that decision rules formed by inductive learning may outperform rule>

provided by human experts 'Michalski & Chilausky 80, Quinlan 831.

This paper describes briefly an inductive incremental learning program AQ15 that learnrs
attributional description, from examples. As an important aspect of development of learnim g
systems is their evaluation using practical problems, we also present results of applying AO.5 t,
three medical domains: lymphograph., prognosis of breast cancer recurrence, and locat iPo (d
primary tumor. These three domains are characterized by consecutively larger amounts or

inconsistent and sparse learning events.

The evaluation was done from the viewpoint of classification accuracy of the induced rule s on

new objects and cornplertty of the rules. Examples of a few hundred patients with know,
diagno_-es were available, along with the assessed classification accuracy of hurman experts. k\

randomly selected 70(' of examples for rule learning and used the rest for rule testing. For ea, h
domain, the experiment was repeated four times. The induced rules reached the classification
accuracy of human experts. Performance of experts was measured in two out of three domariw.

(breast cancer and primary tumor) testing four and five experts. respectively. The experino-nt-
revealed an intereting phenomenon that by truncating rules and applying flexible rule matIt,1J'
one may significantly reduce the size of the knowledge base without decreasing it, perforrT:i,
accuracy.

2. DESCRIPTION OF AQ15

The program AQI5 is a descendant of the GEM program Reinke 84i and the AQ1 AQl Ise,-

of inductive learning programs, e.g.. ;Michalski & Larson 75. Its ancestors were experrnmnt e
wvith in the areas of plant disease diagnosis iMichalski & Chilauskv 80. Reinke 84:. chess ,nd

games Reinke Z-4. diagnosis of cardiac arrhythmias 'Mozetic 86*, and others. This section

provides a brief description of AQI5 and its basic features. A more detailed presentation is in7

Hong. Mozetic & Michalski 861.

All these systems are based on the AQ algorithm, which generates decision rules from a set ,f
xaMiples, as originally described in fMichalski 69' and 'Michalski & McCormick 71 . When

building a decision rule, AQ performs a heuristic search through a space of logical expressions to

deterunine those that account for all positive examples and no negative examples. Becausv ther,

are usually nany such complete and consistent expressions, the goal of AQ is to find the most

-2 -

preferred one, according to a flexible extra-logical criterion. This criterion is defined by the user

to reflect the needs of the application domain. When input data may include inconsistent and or

incorrect learning events, it may be advantageous to develop incomplete and/or inconsistcnl

descriptions. We tested this hypothesis using the TRUNC method of rule reduction and obtained

results that were quite unexpected. The results seem to indicate that the TRUNC method may

be useful not only for learning from inconsistent and incorrect examples, but also for learning,

from perfect examples. The method is described in sections 3 and 4, and the results in section 5.

Learning examples are given in the form of events, which are vectors of attribute values.

Attributes may be of three types: nominal, linear or structured (the domain :s a hierarchy).
Events represent different decision classes or, generally, concepts. Events from a given class are

considered its positive examples, and all other events are considered its negative examples. For

each class a decision rule is produced that covers all positive examples and no negative ones.

Rules are represented in VL 1 (Variable-valued Logic system 1) notation

Michalski & Larson 75'. VL1 is a multiple-valued logic attributional calculus with typed
variables. A selector relates a variable to a value or a disjunction of values, e.g.:

[Weathertype = cloudy V raini

A conjunction of selectors forms a complex. The following complex states that the weather i-
cloudy, the temperature is greater than 60 degrees, and winds blow from the South or West:

MWeatherjtype = cloudy & 'Temp > 601 & [Wind-direction = South V West!

Complexes are assembled into covers. A cover is a disjunction of complexes describing n1l
positive examples and none of the negative examples of the concept. A cover is formed for earlt

decision class separately. It defines the condition part of a corresponding decision rule. Th,
following are two examples of decision rules:

'Transport - car 'W Weather type = cloudy V rain V Temp 40..60

Transport = bike ' = Weathertype = sun &- Temp •bt

As one can see. the rules are easy to interpret. This ease of interpretinc AQ15 generated rulesi,
one of the most attractive features of the program. The major idea behind the coverinf,

algorithm is to generate a cover in steps. each step producing one conjunctive term (complex' ,I'
the cover. Each step starts with focusing attention on one selected positive example a .Seed). l'T,

algorithm generates a set of all complexes (a star) which cover the seed and do not cover an,'

negative examples, and then selects the best complex from the star according to the user definei

criteria. The basic covering algorithm is as follows:

i -3-

While partial cover does not cover all positive examples
do 1. select an uncovered positive example (a seed),

2. determine maximally general complexes covering the seed and no negative
examples (generate a star),

3. select the best complex from the star according to the user-defined
problem-dependent preference criteria,

4. generate a new partial cover by adding the best complex to the current cover.
At the end, a partial cover becomes a cover of the class.

The algorithm starts with an initial cover that is either empty, was previously learned, or is
supplied by the user. Extending the seed against all the negative examples, i.e. generating a star
in step 2, is again a multistep procedure which can be described as follows:

While partial star covers some negative examples
do 1. select a covered negative example,

2. generate all maximally general hypotheses that cover the seed and exclude
the negative example; the resulting set is called a partial star of the seed
against the negative example,

3. generate a new partial star by intersecting the current partial star
with the partial star of the seed against the negative example.

4. trim the partial star if the number of disjoint complexes exceeds
the user defined threshold (the mazstar parameter).

At the end, a partial star becomes the star of the seed, i.e., the set of maximally
general complexes covering the seed and not covering any negative example.

The procedure starts with an initial ttar which is either the entire event space or a complex frorm
the initial cover. If the star generating procedure were to work exhaustively, the search sp~Ct Fo:
covers might grow very rapidly with the number of negative examples and the number of

variables used. To deal with this problem, a parameter (mazstar) controls how many disjoiro
complexes may be kept in a partial star. If the number of its disjoint complexes exceeds thet
parameter. the star is trimmed according to the user specified criteria. A typical criterion is: fir-a
maximize the number of positive examples covered" and then, in the case of a tie, "minimize th'

number of selectors" or "minimize the total cost of variables used".

The program is able to produce rules of different degrees of generality. Rules may be .enrr-!
(having minimum number of variables, each with maximum number of disjunctive r',,' .

minimal (minimum number of both. variables and values), or ,,pecific (maximum number ,f
variables, each with minimum number of values).

AQ15 has the incremental learning facility. The user may supply his decision hypothese! as
initial rules. The system implements the method of learning with full memory. In this type of
learning the system remembers all learning examples that were seen so far, as well as the rule, it
formed. By this method, as opposed to learning with partial memory, new decision rules are
guaranteed to be correct with respect to all (old and new) learning examples [Reinke 8.1.
Reinke & Michalski 861.

-4-

When learning from inconsistent examples, the system provides three options: a) inconsistent
examples are treated as positive examples, b) as negative examples, or c) are removed from the,
data; in this case their membership is decided by the learning process. If statistical information
about the probability of inconsistent examples is available, they are preclassified according to tht
maximum likelihood [Michalski & McCormick 711.

A form of constructive induction is implemented in AQ15 as well. The program's background
knowledge is expressed in the form of rules, used to generate new attributes not present in inpult

data. The background knowledge rules are of two types: L-rules (logic) t!lat define values of
new variables by logical expressions, and A-rules (arithmetic) that introduct new variables as
arithmetic functions of original variables. The L-rules and A-rules are two different
representations of domain knowledge relevant to the learning process. The L-rules permit one to
represent background concept definitions, constraints among the concepts, concept generalization
hierarchies, causal dependencies, etc. Concepts known to the program or learned by the program
are also added to the stock of L-rules. The algorithm attempts to use new variables to produc,
better decision rules. The following is an example of a simple L-rule:

ITemp < 32' -> [Weather-type rain] & [Amount-of-rain = NAI

The program is also capable of automatically testing the learned rules on new events. It
produces a confusion matriz that shows for each concept and event the degree of match.
according to the flexible rule interpretation method (see Section 4). Thus it seems to be an ideal
tool for experimenting on inductive knowledge acquisition in a variety of practical domains.
AQ15 is implemented in Berkley Pascal and runs under the Unix operating system on VAN ;nd
SUN machines. It consists of approximately 13.000 lines of code.

3. TRUNCATION OF RULES AND FLEXIBLE MATCHING

Most human concepts are structures with flexible, imprecise boundaries. They can match

different instances with varying degrees of precision and have context-dependent niearniui.
Flexible boundaries permit one to use concepts beyond the typical range; imprecise boundarie-

are useful for avoiding superfluous or undesirable precision. When building a learninv ,,r

inference system, two crucial issues are the way in which concepts art represented, and the, wiN
in which they are recognized.

As pointed out in iMichalski 861, the meaning of a concept can be distributed between it, hos,
representation and the method of its interpretation. The base representation explicitly state.s thy
typical, context-independent properties of the concept. The intertretation method determines

whether a given instance satisfies the base concept description by conducting inference
deductive, analogical or inductive - using contextual information and background knowledge.
The method may give a yes-no answer or may determine the degree to which the instance
satisfies the base concept representation.

Such a two-tiered concept representation yields a spectrum of possibilities. At one extreme. all
the concept properties are explicitly defined, including any concept variations and exceptions.

This may lead to a very complex and unwieldy concept representation. The concept recognition
process, however, would involve merely a simple matching of the properties of an instance with
the information in the concept description. At the other end of the spectrum, the concept is
explicitly represented only by a simple prototypical description characterizing its ideal form.
Such a prototypical description does not have to relate to a single object like in the family
resemblance case [Rosch & Mervis 75, Murphy & Medin 85] but may be an abstract concept,
specification (e.g., a logical formula involving disjunction). The process of concept recognition
using a prototypical description is more complicated. Instead of seeking a strict match (a
satisfaction of a complex description), the system determines the degree of similarity between the
prototypical (ideal) concept description and the given instance, and compares it with the results
from matching the instance with other ideal concept descriptions. The concept that gives the best,
match is assigned to the instance. This method saves memory for concept representation at th,

expense of more complicated matching procedure. The matching procedure may be the same for
a class of concepts, which increases the cost-effectiveness. Also, by changing the concept
interpretation method one may affect the concept recognition process without changing th,
concept representation, and thus may apply the concept to new situations, not originally

planned.

Depending on the costs associated with storing a representation and performing the inference. the
most effective distribution of meaning between the concept representation and interpretation
corresponds to some point within the above spectrum. Interesting research problems are to
determine this point of optimal balance, and to find out what concept interpretation methods
should be used in different situations. Some preliminary experimental results on the last probern

are discussed in iMichalski & Chilausky 803, and more recently in IUhrik 85).

Let us illustrate the above ideas by the knowledge representation used in AQ15. In this program
concepts are represented by a disjunction of conjunctive expressions (complexes). Each expression
is associated with a pair of weights: t and u, representing the total number of instances (events'
explained by the expression, and the number of events explained uniquely by that expression.

respectively. The complexes are ordered according to decreasing values of the t-weight. Th, t-
weight may be interpreted as a measure of the typicality or the representativeness of a complN
w; a concept description. The complex with the highest weight (t-weight) may be interpreted a,
describing the most typical examples of the concept. It. may also be viewed as a prototypical or

the ideal definition of the concept. On the other hand the complexes with lowest u-weight can b,
viewed as describing rare, exceptional cases. If the learning events from which rules are derived
are noisy, such "light" complexes may be indicative of errors in the data.

Two methods of recognizing the concept membership of an instance are distinguished: the strict
match and the flezible match. In the strict match, one tests whether an instance satisfies
condition part of a rule (or, generally, if it can be logically derived from it). In the flexible match.
one determines the degree of similarity or conceptual closeness between the instance and the
condition part. Using the strict match, one can recognize a concept without checking other
candidate concepts, i.e., without taking into consideration the context. In the flexible match. one
needs to perform inference involving an event and candidate rules, and determine the most
similar concept that best "matches" the instance. The flexible matching can be accomplished in a
variety of ways, ranging from approximate matching of features through deduction and analogy.

to conceptual cohesiveness that employs inductive inference [Michalski & Stepp 831.

The above weight-ordering of complexes suggests an interesting possibility. Suppose we havo -I
t-weight ordered disjunction of complexes, and we remove from it the lightest complex. So
truncated description will not strictly match events that uniquely satisfy the truncated complex.
However, by applying a flexible match, these events may still come out to be the most closely
related to the correct concept, and thus be correctly recognized. A truncated description is. of
course, simpler but carries a potentially higher risk of recognition error, and requires a in.-

sol), :ticated evaluation. We can proceed further and remove the next "light" complex from "
cover, and observe the performance. Each such step produces a different trade-of between I
complexity of the description on one side, and the risk factor and the evaluation complexity wi
the other (Figure 1). At some step the best overall result may be achieved for a given application
domain. This method of knowledge reduction by truncating ordered covers and applying a
flexible matching is called TRUNC.

Cpx I Cpx2 (_px

Ypx3 , Cpx43 4I
(15, 13) (8, 7) (4. 1) (2, 2)

a lb Ic

Figure 1. An example of a t-ordered cover. The cuts at a. b and c mark truncated
covers with 1. 2 or 3 complexes, respectively. In each pair (x,y), x represents the t-
weight, and y represents the u-weight.

The above described trade-off is related to the issues studied in Variable Precision Logic. which
concerned with trade-offs between certainty, computational costs and specificity of inferenc>,
Michalski & Winston 861. An interesting problem is to test how the cover truncation mothod

affects the accuracy of recognition and the comple 'I of the decision rules in different prarlical
settings. Section 5 presents results of some such exp,i' iments, which in some cases came oul % c,
surprising. We now turn to the problem of flexible matching used in this study, and thc
resolution of a conflict when several concept descriptions are satisfied by an event.

4. FLEXIBLE RULE INTERPRETATION

When strictly matching a new event against a set of (disjunctive) rules, three outcomes are
possible: only one rule may be matched (satisfied), more than one rule may be matched, or no
rule may match. These cases are classified into categories called SINGLE, MULTIPLE and

NO.MATCH, respectively (Figure 2). Each category requires a different evaluation procedure.
and a different method of determining the accuracy of concept recognition. For exact match
(category SINGLE), the evaluation is easy: the decision is counted as correct if it is equal to the

i m mu II m l m Ha

-7 -

known diagnosis of the testing object, and as wrong otherwise. If there are several exact matches

(the MULTIPLE case) or none (the NONvATCH case) the system activates the approximatr.

context-dependent scheme that determines the best decision (or the most probable one).

Comparing this decision with the decision provided by experts, one evaluates it as correct or

incorrect. The scheme consists of two simple heuristic evaluation criteria, one for the

MULTIPLE case, and the other for the NO.MATCH case.

SINGLE MULTIPLE NO-MATCH

Figure 2. The three possible cases when matching a new event against a set of

decision rules.

Estimate of probability for the MULTIPLE case (EP). When an event matches a lew.

rules the system selects the one which suggests the most probable decision. Let C 1 ... C denoten
decision classes and e an event to be classified. For each decision class C. we have a rule that

consists of a disjunction of complexes (Cpx), which, in turn are conjunctions of selectors (Sel). We

define the estimate of probability, EP, as follows:

1) EP of a complex Cpx. in the context of the event e is the ratio of the weight of the conmph,,

(the number of positive learning examples covered by the complex) by the total nunih.r d.

learning examples (=examples), if the complex is satisfied by the event e, and equals 0 other\i%,:

I Weight(Cpzj) / #examples if complex Cpz1 is satisfied by e,

EP(Cpx,,e) = I 0 otherwise.

2) EP of a class C. is the probabilistic sum of EPs of its complexes. If the rule for Ci consists of
a disjunction of two complexes Cpx 1 V Cpx 2 , we have:

EP(C1 ,e) = EP(Cpx1 ,e) + EP(CPX2,e) - EP(Cpx1 ,e) X EP(Cpz2,e)

The most probable class is the one with the largest EP, i.e., the one whose satisfied complexes

cover the largest number of learning examples. It is assumed that the learning examples are .,

representative sample of the domain, and that the numbers of examples for each class are

proportional to the frequency of occurence of classes. Obviously, if the class is not satisfied b.

the given event, its EP equals 0. For each C i this measure determines the number of learning

examples that support the classification of the new event into class C. The larger such number

l lIlII~lIIm •• mmnn mm[]I AL

is. the stronger support is assumed.

Measure of fit for the NO-MfATCH case (MF). In this case the event belongs to a part of'

the event space that is not covered by any decision rule and this calls for flexible matching. On,-
way to perform such matching is to measure the fit between attribute values in the event and ti.w
class description, taking into consideration the prior probability of the class. We used in thw
experiments a simple measure, called measure of fit, MF, defined as follows:

1) MF of a selector Selk and an event e is 1, if the selector is satisfied, i.e. if one of event's

attribute values lies in the range of values of the selector. Otherwise, this measure is
proportional to the amount of the decision space covered by the selector:

if selector Sel is satisfied by e,

MF(Selk,e) = Values otherwise.

DomainSize

where Values is the number of disjunctively linked attribute values in the selector. ;nd
DomaInSize is the total number of the attribute's possible values.

2) %fF of a complex Cpx. to an event e is defined as the product of AMfs for a conjunction of it
constituent selectors. weighted by the proportion of learning examples covered by the complex:

MF (Cpz,e -J MF(Selk, e) (Weight(Cpzl) / =. ezamples)

3) MF of a class C. to en event e is obtained as a probabilistic sum for a disjunction of complexes.
If the rule for Ci consists of a disjunction of two complexes Cpx 1 V Cpx 2 , we have:

MF(C,.e) - MF(Cpz,,e) - MF(Cpz,.e) - MF(Cpz,,e) x MF(Cpzr.e)

We can interpret the measure of best fit of a class as a combination of "closeness" of the evcnP t t o

the class and an estimate of the prior probability of the class. Closeness is measured by A\E J
selectors, where the fit is complete for selectors that are satisfied. MF of an unsatisfied selector is
the probability that it will be satisfied if the event's corresponding attribute value changes. .-\

selector that covers more decision space fits an event better than a selector that covers less
decision space (having fewer alternative values). Closeness to a complex is the probability that
the event will be covered by the complex if the values of attributes corresponding to unsatisfied
selectors change. MF of a complex is then weighted by an estimate of priori probability, i.e., the
proportion of the learning examples that it covers. Note that the estimate of probability EP is a
special case of the measure of fit MF; when all selectors in a complex are satisfied the measure of
fit of a complex is the same as the estimate of probability.

mnnm um mmL mnmmnuwm ln rnl~l mA

-9-

The above measure of fit is one of many possible measures that can be devised for flexibl.
matching. One way to improve this measure would be to define a distance between an attribite
value and a selector, when attributes are linear [Michalski & Chilausky 80].

5. EXPERIMENTS

The experiments were performed on data from three medical donains: lymphography, prognosis
of breast cancer recurrence and location of primary tumor. All data were obtained from the
Institute of Oncology of the University Medical Center in Ljubljana, Yugoslavia
[Kononenko, Bratko & Roskar 84].

Lymphography. This domain is characterized by 18 attributes and 4 diagnostic classes. Data of
148 patients were available. The set of attributes was complete, i.e., was sufficient for having all

learning examples consistent. This means that examples of any two classes were always different.
Diagnoses in this domain were not verified and actual testing of physicians was not done. .\
specialist's estimation is that internists diagnose correctly in about 60% and specialists in abot
85% of cases.

Prognosis of Breast Cancer Recurrence. For about 30% of patients that undergo a brvast

cancer operation, the illness reappears in five years. Prognosis of this recurrence is very
important for patients' post-operational treatment. The domain is characterized by 2 decision,
classes and 9 attributes. The set of attributes was incomplete, i.e., not always sufficient t',

distinguish between cases with different prognosis. Data for 286 patients with known diagnostic
status 5 years after the operation were available. Five specialists of the Institute of Oncology
were tested. They gave a correct prognosis in 64% of cases.

Location of Primary Tumor. Physicians distinguish among 22 possible locations of priT7,r

tumor. Patients* diagnostic data were described by 17 attributes. The given set of attrilbu,.-
was incomplete, as some patients with the same values of all attributes had different locatinn ,,I
primary tumor. Data of 339 patients with known locations of primary tumor (verified h,
operation or by X-ray) were available for the experiment. At the Institute of Oncoloiy I

internists and 4 specialists were tested. Internists determined a correct location of prirur.%
tumor in 32% and oncologists in 42% of test cases. Regarding these relatively low results. N,
should stress that there are 22 possible locations and that the correct location of primary turn..'
is only one of the sources of evidence used in cancer treatment.

Table 1 provides a summary of these medical domains, It presents the number of examples. o'

classes, of attributes, and the average number of values per attribute for each domain.

In all medical domains 70% of examples were selected for learning and the remaining 30'(for
testing. Each testing experiment was repeated 4 times with randomly chosen learning examples.
Final results are the average of 4 experiments.

-10

Domain Examples Classes Attributes Values /Attr

Lymphography 148 4 18 3.3
Breast cancer 286 2 9 5.8
Primarv tumor 339 22 17 2.2

Table 1. Characteristics of the data for the three medical domains.

For illustration, in Figure 3 there is an example of a paraphrased rule from the domain of
lymphography.

Diagnosis =lymphoma if:
Filling-defectsjlacunar = none V lacunar V lacunar-central
Special-structures-.and-forms = none V bladder Base
Lymph-.odes.-size-diminishing 0 complex
Lack-ofJymph-nodes-filling -yes

No-of-diseasedivmph-nodes 10 (t-weight:40, u-weight:22)

V
Filling..ofjyvmp.nodes = grains V fine-.drops V dispersed V obscure
Special-structuresand-forms = cup V bladder
Early-filling-ofiymnp--odes =yes
Block-po-afferrent..yessels =no
By-.pass = no (t-weight:.24. u-weight:7)

V
SpeciaL-st ruct uresand -orms = cup V bladder
Lymphyvesels = curves V deformities
Lymph-nodes--ize-enlarged = L..2
Block of-afferen t-essels no
DislocationoPfivmph-nodes = yes (t-weight:18. u-weight:3)

V
Filling..ofjymp-nodes =fine-.drops V stripes V obscure
Filling..defectsvyarious =follicular V gross-central
Lymph--odes-size-enlarged L I.3
Block jofJvnphi-odes-shain =no

Extravasate- = yes (t-welght:10, u-wcight:3)
V

Changes...ojvmphjiodes..shape = oval
No-ofdiseasedJymph-nodes = 30-.39 (t-vieight,:2. u-weight:!)

Figure 3. A complete rule, generated by AQ15 from all available examples. with t-
ordered complexes, for the domain of lymphography. The rule consists of 5
complexes and 22 selectors. After truncation to the "base complex" (with the highest
t-weight) the rule has only 1 complex with 5 selectors. T-weight is the total number
of examples covered by a complex, and u-weight is the number of examples covered
by the complex uniquely.

Two sets of experiments were performed. In the first one only rules of the minimal type were

used. Different cover reduction mechanisms were applied on them, and their effect on complexity

and classification accuracy of rules was determined. Complexity was measured by the total

number of selectors and complexes in the rules, and accuracy by the "lst choice correct"

evaluation method (Table 2). In the second set of experiments we measured classification

accuracy by two parameters: correctness and precision. We used rules of different degree of

generality, applied different evaluation methods and used two cover reduction mechanisms to find

the optimal combination of correctness and precision (Table 3).

Cover Complexity Accuracy Human Random

Domain truncation Sel C, x st choice Experts Choice

no 37 12 81%

Lymphography unique > 1 34 10 80% 85% 257/

base cpx 10 4 82% (estimate)

no 160 41 66%
Breast cancer unique > 1 128 32 66% 7 64% 50/-o

base cpx 7 2 685%

no 551 104 39%

Primary tumor unique > 1 257 42 41 % 42% 50
base cpx 112 21 29%1

Table 2. Average complexity and accuracy of AQ15's rules (minimal type) learned

from 70% of examples, over 4 experiments. Two simple cover truncation mechanisms
were applied - keeping only complexes that uniquely cover more than one example

(unique > 1), and deleting all but the heaviest complex in each rule (base cpx).

In addition to results obtained from using complete (untruncated) rules, results oF tv o (Otl'

experiments are presented. In the first experiment we eliminated from rules all complexes thit
cover uniquely only one learning example, and in the second we eliminated all complexes except
the most representative one that covers the largest number of learning examples. Cornplexityv -f
rules is measured by the number of selectors and complexes. Table 2 shows that some result:
came out very surprising. When the cover of each class was truncated to only one (the heaviest)
complex, the complexity of the rule set for lymphography went down from the total of, 1*
complexes and 37 selectors to only 4 complexes (one per class) and 10 selectors (se, olm,;

numbers). At the same time the performance of rules went slightly up (from 81"7-c to 82(7 (\
similar phenomenon occurred in the breast cancer domain, where the number of selector, ani

complexes went down from 160 and 41 to 7 and 2, respectively; while the performance %ent
slightly up from 66% to 689. This means that by using the TRUNC method one may
significantly reduce the knowledge base without affecting its performance accuracy. Results for
human experts were the average of testing of five and four domain specialists in the domains of
breast cancer re, irrence and primary tumor, respectively [Kononenko, Bratko & Roskar 84.
In the domain of lymphography, physicians' accuracy is given only as their own estimate; it was
not independently measured.

-12-

In practice. giving always exactly one answer (lst choice) is often not the most appropriate. On,,

might wish to get more than just one possible diagnosis, or none if there is not enough evidence.

If any of the alternative diagnoses given by the system is the same as the known diagnosis of the
testing example the answer is counted as a correct one. However, the more alternative diagnoses.
the sn:.aller diagnostic precision of the system. Therefore, in evaluation of such a system, the

results should be measured by two quantities: correctness (the ratio of the number of correct

answers b% the number of testing examples), and precision (the ratio of the number of correct

answers bv the total number of answers given).

Evaluation method for Type of All cpx Best cpx
Domain MULTIPLE NO-MATCH rules Corr. Prec. Corr. Prec.

1st 1st specific 79% 79% 80% 80%
choice choice minimal 81% 81% 82% 82%
correct correct general 81% 81% I 81% 810T

specific 63% 85/% 52% 94%
Lymphography correct always minimal 78% 77 57 58 c. 89%

if match incorrect general 86% 745 58% 87%C

1st specific 80% 78% 81% 81%
correct choice minimal 83% 76% 83% 8217

if match correct general 89c 74c 82e 81%

1st 1st specific 68% 68% 67% 67c%
choice choice minimal 66% 66% i 68% 68,'
correct correct general 5% 65% 65% 5%

specific 59% 64% 13% 67c
Breast cancer correct always minimal 77% 57% I 161% 67-,

if match incorrect general 86% 54% 17% S4 ,%

1st specific 72% 62%" 68 6-lc f;8%
correct choice minimal 80% 58% 68% 6i %

if match correct genera 86 C 54% 66% 66%

1st Ist specific 41% 41% 33% 33c%
choice choice minimal 39% 39% 29, 29%

correct correct general 39%-c 39% 29% 29%

specific 33% 31% 22% 44-%
Primary tumor correct always minimal 50% 24% 25% 3.%c

if match incorrect general 51%, 24% 25c 34%

1st specific 47% 34% 35% 33c%

correct choice minimal 52% 24% 32% 28%
if match correct general 53% 24% 32% 287

Table 3. Trade-offs between correctness and precision of AQ15's rules for different

evaluation methods and different types of rules.

Several experiments with AQ15 were performed to evaluate trade-offs between correctness and
precision (Table 3). This trade-off is a reflection of the phenomena studied in Variable Precision
Logic Michalski &- Winston 84,. We tried three different evaluation schemes (representing

-Ak.

- 18 -

combinations of Ist choice correct, correct if match and incorrect for MULTIPLE and
NO.YATCH cases). The "1st choice correct" means that the best flexible matching was used.
The "correct if match" for MULTIPLE and "incorrect" for NO-MATCH mean that the strict
match method was used. We also used rules of different degree of generality (specific, minimal.
general) and different cover reduction mechanism. "All cpx" and "Best cpx" mean complete cover
and the cover truncated to one complex, respectively. One of the interesting future research
tasks is to find an appropriate information-theoretic measure for defining an optimal
combination of correctness and precision.

6. ANALYSIS OF RESULTS

The domain of lymphography seems to have some strong patterns and the set of attributes is
known to be complete. i.e., no event description belongs to more than one class. There are four
possible diagnoses, but only two of them are prevailing, i.e., they occur much more often than
others. The domain of breast cancer has only two decision classes, butr does not have man.
strong patterns. Domain of location of primary tumor has many decision classes and mostly
binar. attributes. There are only a few examples per class, and the domain seems to be without
any strong patterns. Both domains are underspecified in the sense that the set of availble
attributes is incomplete (not sufficient to discriminate between different classes). The statistics in
Table 4 include average number of complexes per rule, average number of attributes per
complex. average number of values per attribute and finally, average number of learning
examples covered by one complex. We can see that in the domain of primary tumor decision
rules consist of complexes that in average cover slightly more than 2 examples. In the domain of
lymphography complexes in average cover 8 examples, which indicates a presence of stronu
patterns.

Domain Cpx/ Rule Attr/Cpx Values/Attr Examples, Cpx

Lymphography 3 3.1 1.8 8
Breast cancer 20 3.9 1.7 5
Primary tumor 5.2 5.3 1.0 2.3

Table 4. Average complexity of AQ15's decision rules (minimal type) in the three,
medical domains, when no cover truncation mechanism was applied.

Several experiments with AQ15 were performed, each with a different complex truncatiot,
heuristic. This was done in order to investigate the trade-off between complexity and acctjracv.
and to derive some preliminary conclusions about the effects of the cover reduction mechanism.
Results given in Table 2 present only two extreme cases of these experiments. By eliminating all
complexes but one, a significant reduction of complexity was obtained. Except for the primary
tumor domain, there was no decrease of accuracy.

In the domain of primary tumor, initial elimination of lightest complexes (those that cover only 1
example) increased accuracy from 33% to 41 %/; accuracy decreased when further complexes were

-14

eliminated. In the domain of lymphography accuracy increased until only one "heaviest" complex
in the two most important rules was kept (82%). In the breast cancer domain each step of
elimination of complexes increased accuracy as well. Best results were obtained when all
complexes for the class "recurrence" were deleted. The obtained diagnostic accuracy was ,,,
which is close to a priori probability of the diagnosis "no recurrence".

It is surprising that a cover reduction mechanism that strongly simplifies the rule base may have
no affect on classification accuracy. Removing complexes from a cover is equivalent to removing
disjunctively linked conditions from a concept description. This process overspecializes
knowledge representation, producing an incomplete concept description (i.e., a one that does not
cover some positive examples).

Such knowledge reduction technique by specialization may be contrasted with knowledg,
reduction by generalization used in the ASSISTANT learning program, a descendant of lr:
Quinlan 83'. This program represents knowledge in the form of decision trees, and has be':n

applied to the same medical problems as here iKononenko. Bratko & Roskar 84j. The prograrn
applies a tree pruning technique based on the principle of maximal classification accurac\. Th,,

technique removes certain nodes from a tree. and is equivalent to removing conjunctively linked
conditions from a concept description. Thus, such a knowledge reduction techniquf
overgeneralizes the knowledge representation. producing an inconststent concept description i.e..
a one that covers some negative examples). It is interesting to point out that this technique niv
also lead to an improvernent of accuracy in decision making when learning from nois. anl
overlapping data. Table 5 presents the complexity and diagnostic accuracy of ASSISTANTs

trees built with and without tree pruning 'Kononenko, Bratko & Roskar 84 . Complexity of
trees is given by the nuinber of nodes and leaves. In all domains results were better when th,' re,

pruning rnechanisn wa-as used.

1 Tree Complexity Accuracy
Domain pruning Nodes Leaves 1st choice

no 38 22 76%
L, mphographyv yes 25 14 77%

no 120 63 67.
Breast cancer ves 16 9 727-c%

no 188 90 41%
Primary tumor yes 35 18 46%

Table 5. Average complexity and accuracy of decision trees built by ASSISTANT on
70% of examples, over 4 experiments. In all three domains the tree pruning
mechanism reduced the complexity and increased the accuracy. Note that more than
one decision may be assigned to some leaves (hence there are only 18 leaves for 22
classes in the primary tumor case).

Tree pruning corresponds to the removal of selectors from complexes. This seems to suggest. that
when learning from noisy or inconsistent examples the knowledge reduction process may not only

A mmm mlmm l
m
mm•Im mm mm

involve removal of complexes from a cover (a specialization process) but also removal of select,,r-
from complexes (a gencralization process). This means that the generated concept description
would be both inconsistent and incomplete. It is an interesting problem for further research to

determine conditions under which such inconsistent and incomplete descriptions might be more

advantageous than consistent and complete ones.

7. CONCLUSION

A major contribution of the paper is a demonstration that a relatively simple, attribute-based

inductive learning method is able to produce decision rules of sufficiently high quality to be
applicable to practical problems with noisy, inconsistent and/or incompletely specified learning
examples. An especially important for practical applications is perhaps the fact that the method

produced these results without using a large amount of domain knowledge that would be required

by an analytic approach or explanation-based generalization [Mitchell. Keller & Kedar-

Cabelli 86: DeJong & Mooney 86!. It relied primarily on learning examples that were obtained

from already existing records or human experts. It is well known that it is typically easier for an
expert to make decisions (i.e., to produce examples) than to formulate a theory justifying them.

Although the program can work with relatively little domain knowledge (e.g., onhN th

specification of types and domains of attributes, and the preference criterion), it can also take

advantage of the domain knowledge when it is available. The latter is realized by employing

background knowledge representation facilities in the form of logical and arithmetical rule- (L

rules and A-rules).

The AQ15 program has shown itself to be a powerful and flexible tool for experimenting with

inductive knowledge acquisition. It produces decision rules which are easy to interpret -,nd

comprehend. The knowledge representation in the program is, however, limited to, .,ij\

attributional descriptions. For problems that require structural descriptions one may uw 4

related program INDUCE2 "Hoff. Michalski & Stepp 83' or its incremental learning ',rsion

INDUCE4 'Mehler, Bentrup & Riedsel 86'. A weakness of the experimental part of the paper is
that the authors had no influence on the way the data were prepared for the experiments and Ihe

available data allowed us to test only a few of the features of AQ15.

Another major result is a demonstration that the knowledge reduction by truncating the co%,rz

may lead in some cases to a substantial reduction of the rule base without decreasing its

performance accuracy. We have also shown that by. varying the degree of generality of rules: :,tI1

applying different evaluation methods, different trade-offs between the correctness and precisioT
of decision rules are achieved. Further research will be required to find for an' given domain I

ru!e reduction criterion that leads to the best trade-off between accuracy and complexity of a
rule base. Another topic for further research is to develop more sophisticated methods for

flexible matching.

I~m ~ nnmnlmmuul •ni a tni l~ -A

16

ACKNOWLEDGEMENTS

The authors thank Ivan Bratko and Igor Kononenko from the Faculty of Electrical Engineering
at the E. Kardelj University in Ljubljana for collaboration and comments, and physicians Matja7
Zwitter and Milan Soklic from the Institute of Oncology at the University Medical Center in

Ljubljana for providing medical data and helping to interpret them. We further acknowledge
Gail Thornburg from the UI School of Library and Information Science and the A] Laboratory w
the Dept. of Computer Science for her criticism and valuable suggestions.

REFERENCES

DeJong G., Mooney, R., Explanation-Based Learning: An Alternative View. Machine Learnn.,
Vol. 1. No. 2, 1986.

Hoff, W., Michalski. R.S., Stepp. R.E., INDUCE.2: A Program for Learning Structural
Descriptions from Examples. Report ISG 83-4, UIUCDCS-F-83-904, Dept. of Computer Science.

University of Illinois at Urbana-Champaign, 1983.

Hong, J.. Mozetic. L. Michalski. R.S., AQ15: Incremental Learning of Attribute-B~asdJ

Descriptions from Examples. the Method and User's Guide. Report ISG 86-5, UIU('DCS-FI 86
949. Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1986.

hononenko. I.. Bratko. I., Roskar, E.. Experiments in Automatic Learning of Medical Diagnosti,

Rules. Presented at the International School for the Synthesis of Expert Knowledge Workshop "4.
Bled, Yugoslavia. August 22-24. 1984. Also Technical Report, Faculty of Electrical Engineerinc.
E. Kardelj University. Ljubljana. Yugoslavia, 1984.

Nliehler. G.. Bentrup. J.. Riedesel J., INDUCE.4: A Program for Incrementally Learning
Structura! Descriptions from Examples. Report in preparation. Dept. of Computer SciPTncf'.

University of Illinois at. Urbana-Champaign, 1986.

Michalski, R.S., On the Quasi-Minimal Solution of the General Covering Problem. Proceedinos

of the I' [nternational Symposium on Information Processing (FCIP 69). Vol. A.3 ('witchin'L
Circuits). Bled. Yugoslavia. pp. 125-128, 1969.

.Michalski. R.S.. Theory and Methodology of Machine Learning. In R.S. Michalski, .1.(;
Carbonell. T.M. Mitchell (Eds.), Machine Learning - An Artificial Intelligence Approach. Pa4,

Alto: Tioga, 1983.

Michalski. R.S.. Two-tiered Concept Representation, Inferential Matching and Conceptual
Cohesiveness. An invited paper for the Workshop on Similarity and Analogy. Allerton House.

University of Illinois. June 12-14, 1986.

ll/ lll ~~~ll ~
I

Inl/

- 17

Michalski, R.S., Chilausky. R.L., Learning by Being Told and Learning from Examples: Ail
Experimental Comparison of the Two Methods of Knowledge Acquisition in the Context of
Developing an Expert System for Soybean Disease Diagnosis. International Journal of Policy
Analysis and Information Systems, Vol. 4, No. 2, pp. 125-161, 1980.

Michalski. R.S., Larson. J., AQVAL/I1 (AQ7) User's Guide and Program Description. Report No.
731, Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1975.

Michalski, R.S.. McCormick. B.H., Interval Generalization of Switching Theory. Report No. 442.
Dept. of Computer Science. University of Illinois at Urbana-Champaign, 1971.

Michalski. R.S.. Stepp, R.E.. Learning from Observations: Conceptual Clustering. In R.S.
Michalski, J.G. Carbonell, T.M. Mitchell (Eds.), Machine Learning - An Artificial Intelligence

Approach. Palo Alto: Tioga, 1983.

Michalski. R.S.. Winston. P.H.. Variable Precision Logic. Artificial Intelligence Memo No. 857.
MIT. Cambridge. An extended version to appear in AI Journal, 1986.

Mitchell, T.M.. Keller. R.M.. Kedar-Cabelli, S.T., Explanation-Based Generalization: A Unifyinp
View. Machine Learning. Vol. 1, No. 1, pp. 47-80, 1986.

Mozetic. .. Knowledge Extraction through Learning from Examples. In T.M. Mitchell. J.(.
Carbonell. R.S. Michalski (Eds.), Machine Learning: A Guide to Current Research. Kluwer

Academic Publishers. 1986.

Murphy. G.L.. Medin. D.L.. The IFkle of Theories in Conceptual Coherence. Psycholoqi,.,,l
Revieu. Vol. 92, No. 3. 1985.

Quinlan. J.R., Learning Efficient Classification Procedures and their Application to Chess End
Games. In R.S. Michalski. J.G. Carbonell, T.M. Mitchell (Eds.), Machine Learning - An Artfiernl
Intelligence Approach. Palo Alto: Tioga, 1983.

Reinke. R.E., Knowledge Acquisition and Refinement Tools for the ADVISE META-EXPEI T
System. M.S. Thesis, ISG 84-4, UIUCDCS-F-84-921, Dept. of Computer Science. University oi
Illinois at Urbana-Champaign, 1984.

Reinke. R.E.. Michalski, R.S., Incremental Learning of Decision Rules: A Method anId
Experimental Results. To appear in Machine Intelligence 11 (eds. J.E. Hayes, D. Michie. .1.
Richards), Oxford University Press, 1986.

Rosch, E., Mervis, C.B., Family Resemblance: Studies in the Internal Structure of Categories.
Cognitive Psychology, No. 7, 1975.

Uhrik. T.K., A Rule Exerciser for Knowledge Base Enhancement in Expert Systems. M.S. Thesis.
Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1985.

T

